All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ddogleg.optimization.trustregion.UnconMinTrustRegionBFGS_F64 Maven / Gradle / Ivy

Go to download

DDogleg Numerics is a high performance Java library for non-linear optimization, robust model fitting, polynomial root finding, sorting, and more.

There is a newer version: 0.23.4
Show newest version
/*
 * Copyright (c) 2012-2018, Peter Abeles. All Rights Reserved.
 *
 * This file is part of DDogleg (http://ddogleg.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ddogleg.optimization.trustregion;

import org.ddogleg.optimization.FactoryNumericalDerivative;
import org.ddogleg.optimization.UnconstrainedMinimization;
import org.ddogleg.optimization.functions.FunctionNtoN;
import org.ddogleg.optimization.functions.FunctionNtoS;
import org.ddogleg.optimization.math.HessianBFGS;
import org.ddogleg.optimization.quasinewton.EquationsBFGS;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;

/**
 * Implementations of {@link TrustRegionUpdateCauchy_F64} for {@link UnconstrainedMinimization}. The hessian is approximated
 * using the {@link EquationsBFGS BFGS} method. This method exhibits poor convergence, probably due to the Hessian
 * being estimated poorly at times.
 *
 * @author Peter Abeles
 */
public class UnconMinTrustRegionBFGS_F64
		extends TrustRegionBase_F64
		implements UnconstrainedMinimization
{
	// temp variable of length N
	private DMatrixRMaj y = new DMatrixRMaj(1,1);

	private DMatrixRMaj gradientPrevious = new DMatrixRMaj(1,1);
	private DMatrixRMaj xPrevious = new DMatrixRMaj(1,1);
	private DMatrixRMaj s = new DMatrixRMaj(1,1);

	protected double f_prev;

	private FunctionNtoS functionCost;
	private FunctionNtoN functionGradient;

	private double minimumFunctionValue;

	// true if it's the first iteration
	private boolean firstIteration;

	double c1=1e-4,c2=0.9;

	public UnconMinTrustRegionBFGS_F64(ParameterUpdate parameterUpdate, HessianBFGS hessian ) {
		super(parameterUpdate, hessian);
	}

	@Override
	public void setFunction(FunctionNtoS function, FunctionNtoN gradient, double minFunctionValue) {
		this.functionCost = function;
		if( gradient == null )
			this.functionGradient = FactoryNumericalDerivative.gradientForwards(function);
		else
			this.functionGradient = gradient;
		this.minimumFunctionValue = minFunctionValue;
	}

	@Override
	public void initialize(double[] initial, double ftol, double gtol) {
		this.initialize(initial,functionCost.getNumOfInputsN(), minimumFunctionValue);
		config.ftol = ftol;
		config.gtol = gtol;
	}

	/**
	 * Override parent to initialize matrices
	 */
	@Override
	public void initialize(double[] initial, int numberOfParameters, double minimumFunctionValue) {
		super.initialize(initial, numberOfParameters,minimumFunctionValue);
		y.reshape(numberOfParameters,1);

		xPrevious.reshape(numberOfParameters,1);
		x.reshape(numberOfParameters,1);

		// set the previous gradient to zero
		gradientPrevious.reshape(numberOfParameters,1);
		gradientPrevious.zero();

		firstIteration = true;
	}

	@Override
	protected double cost(DMatrixRMaj x) {
		return functionCost.process(x.data);
	}

	@Override
	protected void functionGradientHessian(DMatrixRMaj x, boolean sameStateAsCost, DMatrixRMaj gradient, HessianBFGS hessian) {
		functionGradient.process(x.data, gradient.data);

		if( !firstIteration ) {
			// compute the change in Gradient
			CommonOps_DDRM.subtract(gradient, gradientPrevious, y);
			CommonOps_DDRM.subtract(x, xPrevious, s);

			// Only update when the Wolfe condition is true of the Hessian gets corrected very quickly
			if( wolfeCondition(s,y,gradientPrevious)) {
				// Apply DFP equation and update H
				// Note: there is some duplication in math between Wolfe, update(), and inverseUpdate()
				hessian.update(s,y);

				gradientPrevious.set(gradient);
				xPrevious.set(x);
				f_prev = fx;
			}
		} else {
			firstIteration = false;
			gradientPrevious.set(gradient);
			xPrevious.set(x);
			f_prev = fx;
		}
	}

	/**
	 * Indicates if there's sufficient decrease and curvature. If the Wolfe condition is meet then the Hessian
	 * will be positive definite.
	 * @param s change in state (new - old)
	 * @param y change in gradient (new - old)
	 * @param g_k Gradient at step k.
	 * @return
	 */
	protected boolean wolfeCondition( DMatrixRMaj s , DMatrixRMaj y , DMatrixRMaj g_k) {
		double left = CommonOps_DDRM.dot(y,s);
		double g_s = CommonOps_DDRM.dot(g_k,s);
		double right = (c2-1)*g_s;
		if( left >= right ) {
			return (fx-f_prev) <= c1*g_s;
		}
		return false;
	}

	@Override
	public double[] getParameters() {
		return x.data;
	}

	@Override
	public double getFunctionValue() {
		return fx;
	}

	@Override
	public boolean isUpdated() {
		return mode == Mode.COMPUTE_DERIVATIVES;
	}

	@Override
	public boolean isConverged() {
		return mode == Mode.CONVERGED;
	}
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy