All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ddogleg.nn.alg.searches.KdTreeSearch1Bbf Maven / Gradle / Ivy

Go to download

DDogleg Numerics is a high performance Java library for non-linear optimization, robust model fitting, polynomial root finding, sorting, and more.

There is a newer version: 0.23.4
Show newest version
/*
 * Copyright (c) 2012-2018, Peter Abeles. All Rights Reserved.
 *
 * This file is part of DDogleg (http://ddogleg.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ddogleg.nn.alg.searches;

import org.ddogleg.nn.alg.KdTree;
import org.ddogleg.nn.alg.KdTreeDistance;
import org.ddogleg.nn.alg.KdTreeSearch1;

/**
 * 

* Implementation of {@link KdTreeSearchBestBinFirst} which searches for the single best nearest-neighbor. *

* * @author Peter Abeles */ public class KdTreeSearch1Bbf

extends KdTreeSearchBestBinFirst

implements KdTreeSearch1

{ // the best node so far private KdTree.Node bestNode; /** * Configures the search * * @param maxNodesSearched Maximum number of nodes it will search. Used to limit CPU time. */ public KdTreeSearch1Bbf(KdTreeDistance

distance, int maxNodesSearched) { super(distance,maxNodesSearched); } @Override public KdTree.Node findNeighbor(P target) { bestNode = null; _findClosest(target); return bestNode; } @Override public double getDistance() { return bestDistanceSq; } /** * Checks to see if the current node's point is the closet point found so far */ @Override protected void checkBestDistance(KdTree.Node node, P target) { double distanceSq = distance.distance((P)node.point,target); if( distanceSq <= bestDistanceSq ) { if( bestNode == null || distanceSq < bestDistanceSq ) { bestDistanceSq = distanceSq; bestNode = node; } } } @Override protected boolean canImprove(double distanceSq) { if( distanceSq <= bestDistanceSq ) { return bestNode == null || distanceSq < bestDistanceSq; } return false; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy