org.ddogleg.optimization.math.HessianSchurComplement_DDRM Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ddogleg Show documentation
Show all versions of ddogleg Show documentation
DDogleg Numerics is a high performance Java library for non-linear optimization, robust model fitting, polynomial root finding, sorting, and more.
/*
* Copyright (c) 2012-2018, Peter Abeles. All Rights Reserved.
*
* This file is part of DDogleg (http://ddogleg.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.ddogleg.optimization.math;
import org.ejml.LinearSolverToSparse;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.factory.LinearSolverFactory_DDRM;
import org.ejml.dense.row.mult.MatrixMultProduct_DDRM;
import org.ejml.dense.row.mult.MatrixVectorMult_DDRM;
import org.ejml.interfaces.linsol.LinearSolverDense;
/**
* Implementation of {@link HessianSchurComplement_Base} for {@link DMatrixRMaj}
*
* @author Peter Abeles
*/
public class HessianSchurComplement_DDRM
extends HessianSchurComplement_Base
{
public HessianSchurComplement_DDRM() {
this( LinearSolverFactory_DDRM.chol(100),
LinearSolverFactory_DDRM.chol(100));
}
public HessianSchurComplement_DDRM(LinearSolverDense solverA,
LinearSolverDense solverD)
{
super(new LinearSolverToSparse<>(solverA),
new LinearSolverToSparse<>(solverD));
}
/**
* Compuets the Hessian in block form
* @param jacLeft (Input) Left side of Jacobian
* @param jacRight (Input) Right side of Jacobian
*/
@Override
public void computeHessian(DMatrixRMaj jacLeft , DMatrixRMaj jacRight) {
A.reshape(jacLeft.numCols,jacLeft.numCols);
B.reshape(jacLeft.numCols,jacRight.numCols);
D.reshape(jacRight.numCols,jacRight.numCols);
// take advantage of the inner product's symmetry when possible to reduce
// the number of calculations
MatrixMultProduct_DDRM.inner_reorder_lower(jacLeft,A);
CommonOps_DDRM.symmLowerToFull(A);
CommonOps_DDRM.multTransA(jacLeft,jacRight,B);
MatrixMultProduct_DDRM.inner_reorder_lower(jacRight,D);
CommonOps_DDRM.symmLowerToFull(D);
}
@Override
public DMatrixRMaj createMatrix() {
return new DMatrixRMaj(1,1);
}
@Override
protected double innerProduct(double[] a, int offsetA, DMatrixRMaj B, double[] c, int offsetC) {
return MatrixVectorMult_DDRM.innerProduct(a,0,B,c,offsetC);
}
@Override
protected void extractDiag(DMatrixRMaj input, DMatrixRMaj output) {
CommonOps_DDRM.extractDiag(input,output);
}
@Override
protected void divideRowsCols(double[] diagA, int offsetA, DMatrixRMaj B, double[] diagC, int offsetC) {
CommonOps_DDRM.divideRowsCols(diagA,offsetA,B,diagC,offsetC);
}
@Override
protected void multTransA(DMatrixRMaj A, DMatrixRMaj B, DMatrixRMaj C){
CommonOps_DDRM.multTransA(A,B,C);
}
@Override
protected void add(double alpha, DMatrixRMaj A, double beta, DMatrixRMaj B, DMatrixRMaj C) {
CommonOps_DDRM.add(alpha,A,beta,B,C);
}
@Override
protected void mult(DMatrixRMaj A, DMatrixRMaj B, DMatrixRMaj C) {
CommonOps_DDRM.mult(A,B,C);
}
}