org.ddogleg.fitting.modelset.distance.FitByMeanStatistics Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ddogleg Show documentation
Show all versions of ddogleg Show documentation
DDogleg Numerics is a high performance Java library for non-linear optimization, robust model fitting, polynomial root finding, sorting, and more.
The newest version!
/*
* Copyright (c) 2012-2020, Peter Abeles. All Rights Reserved.
*
* This file is part of DDogleg (http://ddogleg.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.ddogleg.fitting.modelset.distance;
import org.ddogleg.fitting.modelset.DistanceFromModel;
import java.util.ArrayDeque;
import java.util.Iterator;
/**
* Computes the mean error and prunes points based on the number of standard deviations they are away.
*
* @author Peter Abeles
*/
@SuppressWarnings("NullAway.Init")
public class FitByMeanStatistics implements StatisticalFit {
protected DistanceFromModel modelError;
protected ArrayDeque> allPoints = new ArrayDeque<>();
// the number of standard deviations away that points are pruned
private final double pruneThreshold;
// the mean error
private double meanError;
// the standard deviation of the error
private double stdError;
/**
* @param pruneThreshold Number of standard deviations away that points will be pruned.
*/
public FitByMeanStatistics(double pruneThreshold) {
this.pruneThreshold = pruneThreshold;
}
@Override
public void init(DistanceFromModel modelError, ArrayDeque> allPoints ) {
this.modelError = modelError;
this.allPoints = allPoints;
}
@Override
public void computeStatistics() {
computeMean();
computeStandardDeviation();
}
@Override
public void prune() {
double thresh = stdError * pruneThreshold;
Iterator> iter = allPoints.iterator();
while( iter.hasNext() ) {
Point pt = iter.next().data;
// only prune points which are less accurate than the mean
if (modelError.distance(pt) - meanError > thresh) {
iter.remove();
}
}
}
@Override
public double getErrorMetric() {
return meanError;
}
/**
* Computes the mean and standard deviation of the points from the model
*/
private void computeMean() {
meanError = 0;
int size = allPoints.size();
for (PointIndex inlier : allPoints) {
Point pt = inlier.data;
meanError += modelError.distance(pt);
}
meanError /= size;
}
private void computeStandardDeviation() {
stdError = 0;
int size = allPoints.size();
for (PointIndex inlier : allPoints) {
Point pt = inlier.data;
double e = modelError.distance(pt) - meanError;
stdError += e * e;
}
stdError = Math.sqrt(stdError / size);
}
}