org.ddogleg.fitting.modelset.distance.FitByMedianStatistics Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ddogleg Show documentation
Show all versions of ddogleg Show documentation
DDogleg Numerics is a high performance Java library for non-linear optimization, robust model fitting, polynomial root finding, sorting, and more.
The newest version!
/*
* Copyright (c) 2012-2020, Peter Abeles. All Rights Reserved.
*
* This file is part of DDogleg (http://ddogleg.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.ddogleg.fitting.modelset.distance;
import org.ddogleg.fitting.modelset.DistanceFromModel;
import org.ddogleg.sorting.QuickSort_F64;
import java.util.ArrayDeque;
import java.util.Iterator;
/**
* Computes the median error and prunes points if they have more than the specified percentile
* error.
*
* @author Peter Abeles
*/
@SuppressWarnings("NullAway.Init")
public class FitByMedianStatistics implements StatisticalFit {
private DistanceFromModel modelError;
// set of points which contains all the inliers
private ArrayDeque> allPoints;
// The fraction of samples that are not pruned
private double pruneThreshold;
// the found median error of the points
private double medianError;
// points which have this error or more are pruned
private double pruneVal;
// initial array containing all the errors
// sorting is faster with raw arrays
double[] errors = new double[100];
double[] origErrors = new double[100];
QuickSort_F64 sorter = new QuickSort_F64();
/**
* Creates a new FitByMedianStatistics.
*
* @param pruneThreshold Fraction of samples that are not pruned.
*/
public FitByMedianStatistics(double pruneThreshold) {
if (pruneThreshold < 0 || pruneThreshold > 1.0)
throw new IllegalArgumentException("The threshold must be between 0 and 1");
this.pruneThreshold = pruneThreshold;
}
@Override
public void init(DistanceFromModel modelError, ArrayDeque> allPoints ) {
this.modelError = modelError;
this.allPoints = allPoints;
}
@Override
public void computeStatistics() {
int size = allPoints.size();
if (errors.length < size) {
errors = new double[size * 3 / 2];
origErrors = new double[errors.length];
}
Iterator> iter = allPoints.iterator();
int index = 0;
while( iter.hasNext() ) {
Point pt = iter.next().data;
errors[index++] = modelError.distance(pt);
}
System.arraycopy(errors, 0, origErrors, 0, size);
int where = (int) (size * pruneThreshold);
sorter.sort(errors, size);
medianError = errors[size / 2];
pruneVal = errors[where];
}
/**
* Removes all samples which have an error larger than the specified percentile error.
*/
@Override
public void prune() {
Iterator> iter = allPoints.iterator();
int index = 0;
while( iter.hasNext() ) {
iter.next();
if (origErrors[index++] >= pruneVal) {
iter.remove();
}
}
}
@Override
public double getErrorMetric() {
return medianError;
}
}