All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ddogleg.nn.wrap.WrapExhaustiveNeighbor Maven / Gradle / Ivy

Go to download

DDogleg Numerics is a high performance Java library for non-linear optimization, robust model fitting, polynomial root finding, sorting, and more.

The newest version!
/*
 * Copyright (c) 2012-2020, Peter Abeles. All Rights Reserved.
 *
 * This file is part of DDogleg (http://ddogleg.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ddogleg.nn.wrap;

import org.ddogleg.nn.NearestNeighbor;
import org.ddogleg.nn.NnData;
import org.ddogleg.nn.alg.ExhaustiveNeighbor;
import org.ddogleg.nn.alg.KdTreeDistance;
import org.ddogleg.struct.DogArray;
import org.ddogleg.struct.DogArray_F64;
import org.ddogleg.struct.DogArray_I32;

import java.util.List;

/**
 * Wrapper around {@link org.ddogleg.nn.alg.ExhaustiveNeighbor} for {@link NearestNeighbor}
 *
 * @author Peter Abeles
 */
@SuppressWarnings("NullAway.Init")
public class WrapExhaustiveNeighbor

implements NearestNeighbor

{ KdTreeDistance

distance; List

points; public WrapExhaustiveNeighbor(KdTreeDistance

distance ) { this.distance = distance; } @Override public void setPoints(List

points, boolean trackIndicies) { this.points = points; } @Override public Search

createSearch() { return new InternalSearch(distance); } private class InternalSearch implements Search

{ ExhaustiveNeighbor

alg; DogArray_I32 outputIndex = new DogArray_I32(); DogArray_F64 outputDistance = new DogArray_F64(); InternalSearch(KdTreeDistance

distance) { alg = new ExhaustiveNeighbor<>(distance); alg.setPoints(points); } @Override public boolean findNearest(P point, double maxDistance, NnData

result) { if (maxDistance < 0) maxDistance = Double.MAX_VALUE; alg.setPoints(points); int index = alg.findClosest(point, maxDistance); if (index >= 0) { result.point = points.get(index); result.distance = alg.getBestDistance(); result.index = index; return true; } else { return false; } } @Override public void findNearest(P point, double maxDistance, int numNeighbors, DogArray> results) { results.reset(); if (maxDistance < 0) maxDistance = Double.MAX_VALUE; alg.setPoints(points); outputIndex.reset(); outputDistance.reset(); alg.findClosestN(point, maxDistance, numNeighbors, outputIndex, outputDistance); for (int i = 0; i < outputIndex.size; i++) { int index = outputIndex.get(i); NnData

r = results.grow(); r.distance = outputDistance.get(i); r.point = points.get(index); r.index = index; } } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy