All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ddogleg.optimization.derivative.NumericalJacobianForward_DSCC Maven / Gradle / Ivy

Go to download

DDogleg Numerics is a high performance Java library for non-linear optimization, robust model fitting, polynomial root finding, sorting, and more.

The newest version!
/*
 * Copyright (c) 2012-2020, Peter Abeles. All Rights Reserved.
 *
 * This file is part of DDogleg (http://ddogleg.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ddogleg.optimization.derivative;

import org.ddogleg.optimization.functions.FunctionNtoM;
import org.ddogleg.optimization.functions.FunctionNtoMxN;
import org.ejml.UtilEjml;
import org.ejml.data.DMatrixSparseCSC;
import org.ejml.data.DMatrixSparseTriplet;
import org.ejml.ops.DConvertMatrixStruct;

/**
 * Finite difference numerical gradient calculation using forward equation. Forward
 * difference equation, f'(x) = f(x+h)-f(x)/h.  Scaling is taken in account by h based
 * upon the magnitude of the elements in variable x.
 *
 * 

* NOTE: If multiple input parameters are modified by the function when a single one is changed numerical * derivatives aren't reliable. *

* * @author Peter Abeles */ public class NumericalJacobianForward_DSCC implements FunctionNtoMxN { // number of input variables private final int N; // number of functions private final int M; // function being differentiated private final FunctionNtoM function; // scaling of the difference parameter private final double differenceScale; private final double[] output0; private final double[] output1; // used to decide if a variable is a zero private double zeroTolerance = UtilEjml.EPS; public NumericalJacobianForward_DSCC(FunctionNtoM function, double differenceScale) { this.function = function; this.differenceScale = differenceScale; this.N = function.getNumOfInputsN(); this.M = function.getNumOfOutputsM(); output0 = new double[M]; output1 = new double[M]; } public NumericalJacobianForward_DSCC(FunctionNtoM function) { this(function,Math.sqrt(UtilEjml.EPS)); } @Override public int getNumOfInputsN() { return N; } @Override public int getNumOfOutputsM() { return M; } @Override public void process(double[] input, DMatrixSparseCSC jacobian) { jacobian.reshape(M,N,N); function.process(input,output0); // Use a triplet initially because it is less expensive to grow DMatrixSparseTriplet tmp = new DMatrixSparseTriplet(M,N,N); for( int i = 0; i < N; i++ ) { double x = input[i]; double h = x != 0 ? differenceScale*Math.abs(x) : differenceScale; // takes in account round off error double temp = x+h; h = temp-x; input[i] = temp; function.process(input,output1); for( int j = 0; j < M; j++ ) { double value = (output1[j] - output0[j])/h; if( Math.abs(value) > zeroTolerance ) tmp.set(j,i,value); } input[i] = x; } DConvertMatrixStruct.convert(tmp,jacobian); } @Override public DMatrixSparseCSC declareMatrixMxN() { return new DMatrixSparseCSC(M,N); } public void setZeroTolerance(double zeroTolerance) { this.zeroTolerance = zeroTolerance; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy