org.ddogleg.optimization.derivative.NumericalJacobianForward_DSCC Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ddogleg Show documentation
Show all versions of ddogleg Show documentation
DDogleg Numerics is a high performance Java library for non-linear optimization, robust model fitting, polynomial root finding, sorting, and more.
The newest version!
/*
* Copyright (c) 2012-2020, Peter Abeles. All Rights Reserved.
*
* This file is part of DDogleg (http://ddogleg.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.ddogleg.optimization.derivative;
import org.ddogleg.optimization.functions.FunctionNtoM;
import org.ddogleg.optimization.functions.FunctionNtoMxN;
import org.ejml.UtilEjml;
import org.ejml.data.DMatrixSparseCSC;
import org.ejml.data.DMatrixSparseTriplet;
import org.ejml.ops.DConvertMatrixStruct;
/**
* Finite difference numerical gradient calculation using forward equation. Forward
* difference equation, f'(x) = f(x+h)-f(x)/h. Scaling is taken in account by h based
* upon the magnitude of the elements in variable x.
*
*
* NOTE: If multiple input parameters are modified by the function when a single one is changed numerical
* derivatives aren't reliable.
*
*
* @author Peter Abeles
*/
public class NumericalJacobianForward_DSCC implements FunctionNtoMxN
{
// number of input variables
private final int N;
// number of functions
private final int M;
// function being differentiated
private final FunctionNtoM function;
// scaling of the difference parameter
private final double differenceScale;
private final double[] output0;
private final double[] output1;
// used to decide if a variable is a zero
private double zeroTolerance = UtilEjml.EPS;
public NumericalJacobianForward_DSCC(FunctionNtoM function, double differenceScale) {
this.function = function;
this.differenceScale = differenceScale;
this.N = function.getNumOfInputsN();
this.M = function.getNumOfOutputsM();
output0 = new double[M];
output1 = new double[M];
}
public NumericalJacobianForward_DSCC(FunctionNtoM function) {
this(function,Math.sqrt(UtilEjml.EPS));
}
@Override
public int getNumOfInputsN() {
return N;
}
@Override
public int getNumOfOutputsM() {
return M;
}
@Override
public void process(double[] input, DMatrixSparseCSC jacobian) {
jacobian.reshape(M,N,N);
function.process(input,output0);
// Use a triplet initially because it is less expensive to grow
DMatrixSparseTriplet tmp = new DMatrixSparseTriplet(M,N,N);
for( int i = 0; i < N; i++ ) {
double x = input[i];
double h = x != 0 ? differenceScale*Math.abs(x) : differenceScale;
// takes in account round off error
double temp = x+h;
h = temp-x;
input[i] = temp;
function.process(input,output1);
for( int j = 0; j < M; j++ ) {
double value = (output1[j] - output0[j])/h;
if( Math.abs(value) > zeroTolerance )
tmp.set(j,i,value);
}
input[i] = x;
}
DConvertMatrixStruct.convert(tmp,jacobian);
}
@Override
public DMatrixSparseCSC declareMatrixMxN() {
return new DMatrixSparseCSC(M,N);
}
public void setZeroTolerance(double zeroTolerance) {
this.zeroTolerance = zeroTolerance;
}
}