org.ddogleg.optimization.math.HessianMath Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ddogleg Show documentation
Show all versions of ddogleg Show documentation
DDogleg Numerics is a high performance Java library for non-linear optimization, robust model fitting, polynomial root finding, sorting, and more.
The newest version!
/*
* Copyright (c) 2012-2018, Peter Abeles. All Rights Reserved.
*
* This file is part of DDogleg (http://ddogleg.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.ddogleg.optimization.math;
import org.ejml.data.DMatrixRMaj;
/**
* Abstraction layer for operations related to hessian matrix. This allows different internal representations
* of the Hessian matrix to be used by the same code.
*
* @author Peter Abeles
*/
public interface HessianMath {
/**
* Initialize Hessian to be in its initial state with the specified dimensions
* @param numParameters Number of optimization parameters. Hessian will be N by N
*/
void init( int numParameters );
/**
* Returns v^T*M*v
*
* @param v vector
*/
double innerVectorHessian(DMatrixRMaj v );
/**
* Extracts diagonal elements from the hessian and stores them in the vector diag
* @param diag vector
*/
void extractDiagonals(DMatrixRMaj diag);
/**
* Sets the diagonal elements in the Hessian to the provided vector
* @param diag vector
*/
void setDiagonals(DMatrixRMaj diag);
/**
* Applies row and column division using the scaling vector.
*
* B = inv(diag(s))*B*inv(diag(s))
*
* @param scaling
*/
void divideRowsCols(DMatrixRMaj scaling);
/**
* Initializes the solver
* @return true if successful
*/
boolean initializeSolver();
/**
* Solves the system
*
* step = inv(B)*Y
*
* @param Y (Input) vector
* @param step (output) vector
*/
boolean solve(DMatrixRMaj Y , DMatrixRMaj step );
}