All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ddogleg.optimization.impl.CauchyStep Maven / Gradle / Ivy

Go to download

DDogleg Numerics is a high performance Java library for non-linear optimization, robust model fitting, polynomial root finding, sorting, and more.

There is a newer version: 0.23.4
Show newest version
/*
 * Copyright (c) 2012-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of DDogleg (http://ddogleg.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ddogleg.optimization.impl;

import org.ejml.alg.dense.mult.VectorVectorMult;
import org.ejml.data.DenseMatrix64F;
import org.ejml.ops.CommonOps;
import org.ejml.ops.NormOps;

/**
 * 

* Selects the optimal point along the gradient line within the trust region's constraint. *

* *

* The negative definite case is not considered because it is impossible when the Hessian is * approximated by squaring the Jacobian. For a matrix to be negative definite there must be a * vector 'x' which will produce a negative result:
* x'*H*x < 0 --> x'*J'*J*x --> (J*x)'*(J*x)
* which is clearly always >= 0 *

* * @author Peter Abeles */ public class CauchyStep implements TrustRegionStep { // square of the Jacobian private DenseMatrix64F B = new DenseMatrix64F(1,1); private DenseMatrix64F gradient; private double gBg; private double gnorm; private boolean maxStep; private double predicted; public void init( int numParam , int numFunctions ) { B.reshape(numParam,numParam); } @Override public void setInputs( DenseMatrix64F x , DenseMatrix64F residuals , DenseMatrix64F J , DenseMatrix64F gradient , double fx ) { this.gradient = gradient; CommonOps.multInner(J, B); gBg = VectorVectorMult.innerProdA(gradient, B, gradient); gnorm = NormOps.normF(gradient); } /** * * Computes the Cauchy step. See comment in class description for why negative definite case * is not considered. * * @param regionRadius * @param step */ @Override public void computeStep( double regionRadius , DenseMatrix64F step) { double dist; double normRadius = regionRadius/gnorm; if( gBg == 0 ) { dist = normRadius; maxStep = true; } else { // find the distance of the minimum point dist = gnorm*gnorm/gBg; // use the border or dist, which ever is closer if( dist >= normRadius ) { maxStep = true; dist = normRadius; } else { maxStep = false; } } CommonOps.scale(-dist,gradient,step); // compute predicted reduction predicted = dist*gnorm*gnorm - 0.5*dist*dist*gBg; } @Override public double predictedReduction() { return predicted; } @Override public boolean isMaxStep() { return maxStep; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy