org.ddogleg.optimization.wrap.LsToNonLinearDeriv Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ddogleg Show documentation
Show all versions of ddogleg Show documentation
DDogleg Numerics is a high performance Java library for non-linear optimization, robust model fitting, polynomial root finding, sorting, and more.
/*
* Copyright (c) 2012-2013, Peter Abeles. All Rights Reserved.
*
* This file is part of DDogleg (http://ddogleg.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.ddogleg.optimization.wrap;
import org.ddogleg.optimization.functions.FunctionNtoM;
import org.ddogleg.optimization.functions.FunctionNtoMxN;
import org.ddogleg.optimization.functions.FunctionNtoN;
import org.ejml.data.DenseMatrix64F;
/**
* Convert the Jacobian of a least squares function into a nonlinear optimization gradient.
*
* G(x) = sum 2*f'_i(x)*f_i(x)
*
* @author Peter Abeles
*/
public class LsToNonLinearDeriv implements FunctionNtoN {
FunctionNtoM func;
FunctionNtoMxN deriv;
double funcOutput[];
double jacobian[];
public LsToNonLinearDeriv(FunctionNtoM func,FunctionNtoMxN deriv) {
this.func = func;
this.deriv = deriv;
funcOutput = new double[ deriv.getNumOfOutputsM() ];
jacobian = new double[ deriv.getNumOfOutputsM()*deriv.getNumOfInputsN() ];
}
@Override
public int getN() {
return deriv.getNumOfInputsN();
}
@Override
public void process(double[] input, double []output) {
func.process(input,funcOutput);
deriv.process(input,jacobian);
DenseMatrix64F J = DenseMatrix64F.wrap(deriv.getNumOfOutputsM(),deriv.getNumOfInputsN(),jacobian);
int N = deriv.getNumOfInputsN();
int M = deriv.getNumOfOutputsM();
for( int i = 0; i < N; i++ ) {
output[i] = 0;
}
for( int i = 0; i < M; i++ ) {
double f = funcOutput[i];
for( int j = 0; j < N; j++ ) {
output[j] += 2*f*J.get(i,j);
}
}
}
}