
deepboof.impl.backward.standard.DActivationSigmoid_F64 Maven / Gradle / Ivy
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.backward.standard;
import deepboof.backward.DActivationSigmoid;
import deepboof.tensors.Tensor_F64;
import java.util.List;
/**
* Implementation of {@link DActivationSigmoid} for {@link Tensor_F64}. Saves the sigmoid computed
* on the forward pass to avoid recomputing the sigmoid on the backwards pass.
*
* @author Peter Abeles
*/
public class DActivationSigmoid_F64 extends ElementWiseDFunction
implements DActivationSigmoid {
// storage for the previously computed sigmoid results
Tensor_F64 memorySigmoid = new Tensor_F64();
@Override
public void _forward(Tensor_F64 input, Tensor_F64 output) {
memorySigmoid.reshape(input.shape);
int length = input.length();
int indexIn = input.startIndex;
int indexOut = output.startIndex;
int indexMem = memorySigmoid.startIndex;
for (int i = 0; i < length; i++) {
double value = input.d[indexIn+i];
// compute and save the sigmoid for each element
memorySigmoid.d[indexMem+i] = output.d[indexOut+i] = 1.0/(1.0 + Math.exp(-value));
}
}
@Override
protected void _backwards(Tensor_F64 input, Tensor_F64 dout,
Tensor_F64 gradientInput, List gradientParameters) {
int length = gradientInput.length();
int indexDIn = gradientInput.startIndex;
int indexDOut = dout.startIndex;
for (int i = 0; i < length; i++) {
double sigmoid = memorySigmoid.d[i];
// the sigmoid derivative can be computed using the original sigmoid
gradientInput.d[indexDIn++] = sigmoid*(1.0-sigmoid)*dout.d[indexDOut++];
}
}
@Override
public Class getTensorType() {
return Tensor_F64.class;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy