
deepboof.impl.backward.standard.DActivationTanH_F64 Maven / Gradle / Ivy
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.backward.standard;
import deepboof.backward.DActivationTanH;
import deepboof.tensors.Tensor_F64;
import java.util.List;
/**
* Implementation of {@link DActivationTanH} for {@link Tensor_F64}. Forward pass tanh is
* cached to reduce computations in backwards pass.
*
* @author Peter Abeles
*/
public class DActivationTanH_F64 extends ElementWiseDFunction
implements DActivationTanH
{
// cache tanh computation to avoid doing it more than once
Tensor_F64 memory = new Tensor_F64();
@Override
protected void _backwards(Tensor_F64 input, Tensor_F64 dout,
Tensor_F64 gradientInput, List gradientParameters) {
memory.reshape(input.getShape());
int length = input.length();
int indexDIn = gradientInput.startIndex;
int indexDout = dout.startIndex;
for (int i = 0; i < length; i++) {
double tanh = memory.d[i];
gradientInput.d[indexDIn++] = (1.0-tanh*tanh)*dout.d[indexDout++];
}
}
@Override
public void _forward(Tensor_F64 input, Tensor_F64 output) {
memory.reshape(input.getShape());
int length = input.length();
int indexIn = input.startIndex;
int indexOut = output.startIndex;
for (int i = 0; i < length; i++) {
double v = Math.tanh(input.d[indexIn+i]);
output.d[indexOut+i] = v;
memory.d[i] = v;
}
}
@Override
public Class getTensorType() {
return Tensor_F64.class;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy