
deepboof.impl.backward.standard.DFunctionDropOut_F64 Maven / Gradle / Ivy
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.backward.standard;
import deepboof.backward.DFunctionDropOut;
import deepboof.misc.TensorOps_F64;
import deepboof.tensors.Tensor_F64;
import java.util.List;
import java.util.Random;
/**
* Implementation of {@link DFunctionDropOut} for {@link Tensor_F64}
*
* @author Peter Abeles
*/
public class DFunctionDropOut_F64 extends BaseDFunction implements DFunctionDropOut {
Random random;
// Specifies chance of a neuron being dropped from 0 to 1.0
double dropRate;
// used to indicate if a neuron is turned off or not. Using a double since it should be faster
// than adding conditional statements (need to verify this)
Tensor_F64 drops = new Tensor_F64();
/**
* Configures drop out
* @param randomSeed random seed used to pick which neurons are dropped
* @param dropRate Fraction of time a neuron is dropped
*/
public DFunctionDropOut_F64( long randomSeed , double dropRate) {
this.random = new Random(randomSeed);
this.dropRate = dropRate;
}
@Override
public void _initialize() {
shapeOutput = shapeInput.clone();
}
@Override
public void _setParameters(List parameters) {}
@Override
public void _forward(Tensor_F64 input, Tensor_F64 output) {
if( learningMode ) {
drops.reshape(input.shape);
int N = drops.length();
int indexIn = input.startIndex;
int indexOut = output.startIndex;
for (int i = 0; i < N; i++) {
double d = drops.d[i] = random.nextDouble() < dropRate ? 0.0 : 1.0;
output.d[indexOut++] = input.d[indexIn++]*d;
}
} else {
TensorOps_F64.elementMult(input,1.0-dropRate,output);
}
}
@Override
public double getDropRate() {
return dropRate;
}
@Override
protected void _backwards(Tensor_F64 input, Tensor_F64 dout, Tensor_F64 gradientInput, List gradientParameters) {
TensorOps_F64.elementMult(dout,drops,gradientInput);
}
@Override
public Class getTensorType() {
return Tensor_F64.class;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy