
deepboof.impl.backward.standard.DFunctionLinear_F64 Maven / Gradle / Ivy
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.backward.standard;
import deepboof.backward.DFunctionLinear;
import deepboof.misc.TensorOps;
import deepboof.tensors.Tensor_F64;
import java.util.List;
import static deepboof.impl.forward.standard.FunctionLinear_F64.forwards;
/**
* Implementation of {@link DFunctionLinear} for {@link Tensor_F64}
*
* @author Peter Abeles
*/
public class DFunctionLinear_F64 extends BaseDFunction
implements DFunctionLinear
{
// number of inputs
protected int D;
// number of outputs
protected int M;
Tensor_F64 weight;
Tensor_F64 bias;
public DFunctionLinear_F64(int numberOfOutputs) {
M = numberOfOutputs;
}
@Override
public int getNumberOfOutputs() {
return M;
}
@Override
public void _setParameters(List parameters) {
weight = parameters.get(0);
bias = parameters.get(1);
}
@Override
public void _forward(Tensor_F64 input, Tensor_F64 output) {
forwards(input, output, weight, bias, miniBatchSize, D, M);
}
@Override
protected void _backwards(Tensor_F64 input, Tensor_F64 dout,
Tensor_F64 gradientInput, List gradientParameters) {
// See FunctionLinear for complete documentation
// Input = (N,d[1], ... , d[K])
// Weights = (M,D)
// Bias = (M)
// Output = (N,M)
Tensor_F64 inputD = gradientInput;
Tensor_F64 weightD = gradientParameters.get(0);
Tensor_F64 biasD = gradientParameters.get(1);
inputD.zero();
weightD.zero();
biasD.zero();
for (int stack = 0; stack < miniBatchSize; stack++) {
for (int outputElement = 0; outputElement < M; outputElement++) {
int indexW = outputElement*D + weight.startIndex;
int indexX = stack* D + input.startIndex;
double val_dout = dout.get(stack,outputElement);
// compute gradient of input tensor and weight
int indexXD = stack*D + inputD.startIndex;
int indexWD = outputElement*D + weightD.startIndex;
for (int i = 0; i < D; i++) {
inputD.d[indexXD++] += weight.d[indexW+i]*val_dout;
weightD.d[indexWD++] += input.d[indexX+i]*val_dout;
}
// gradient of bias
biasD.d[biasD.startIndex+outputElement] += val_dout;
}
}
}
@Override
public void _initialize() {
if( shapeInput.length < 1 ) {
throw new IllegalArgumentException("Input tensor shape must have a dimension of at least 1");
}
// compute number of inputs, which is a volume
D = TensorOps.tensorLength(shapeInput);
// shape of weights
shapeParameters.add( new int[]{M,D});
// shape of biases
shapeParameters.add( new int[]{M});
// shape of output
shapeOutput = new int[]{M};
}
@Override
public Class getTensorType() {
return Tensor_F64.class;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy