
deepboof.impl.backward.standard.NumericalGradient_F64 Maven / Gradle / Ivy
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.backward.standard;
import deepboof.DeepBoofConstants;
import deepboof.Function;
import deepboof.backward.NumericalGradient;
import deepboof.misc.TensorOps_F64;
import deepboof.tensors.Tensor_F64;
import java.util.List;
import static deepboof.misc.TensorOps.WI;
/**
* Implementation of {@link NumericalGradient} for {@link Tensor_F64}
*
* @author Peter Abeles
*/
public class NumericalGradient_F64 implements NumericalGradient
{
Function function;
// sampling distance
double T = DeepBoofConstants.TEST_TOL_A_F64;
Tensor_F64 output = new Tensor_F64();
// passed in parameters
Tensor_F64 input;
List parameters;
@Override
public void configure(double T) {
if( T <= 0 )
throw new IllegalArgumentException("T must be > 0");
this.T = T;
}
@Override
public void setFunction(Function function) {
this.function = function;
}
@Override
public void differentiate(Tensor_F64 input, List parameters, Tensor_F64 dout,
Tensor_F64 gradientInput, List gradientParameters)
{
int N = input.length(0);
output.reshape( WI(N,function.getOutputShape()) );
this.input = input;
this.parameters = parameters;
process(input,dout,gradientInput);
for (int i = 0; i < parameters.size(); i++) {
process(parameters.get(i),dout,gradientParameters.get(i));
}
}
/**
* Computes the gradient for a specific tensor
*/
private void process( Tensor_F64 target , Tensor_F64 dout , Tensor_F64 gradientTarget ) {
int length = target.length();
for (int i = 0; i < length; i++) {
int indexTarget = target.startIndex + i;
double v = target.d[indexTarget];
// value in forward direction
target.d[indexTarget] = v + T;
function.setParameters(parameters);
function.forward(input,output);
TensorOps_F64.elementMult(output,dout,output);
double plus_T = TensorOps_F64.elementSum(output);
// value in backwards direction
target.d[indexTarget] = v - T;
function.setParameters(parameters);
function.forward(input,output);
TensorOps_F64.elementMult(output,dout,output);
double minus_T = TensorOps_F64.elementSum(output);
// undo the changes
target.d[indexTarget] = v;
// compute derivative and save the results
int indexGradient = gradientTarget.startIndex+i;
gradientTarget.d[indexGradient] = (plus_T-minus_T)/(2.0*T);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy