
deepboof.impl.backward.standard.BaseDFunction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of learning Show documentation
Show all versions of learning Show documentation
Trainer Agnostic Deep Learning
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.backward.standard;
import deepboof.DFunction;
import deepboof.Tensor;
import deepboof.impl.forward.standard.BaseFunction;
import deepboof.misc.TensorOps;
import java.util.List;
/**
* Base class which implements common functionality between all {@link DFunction}
*
* @author Peter Abeles
*/
public abstract class BaseDFunction>
extends BaseFunction
implements DFunction
{
protected boolean learningMode = false;
@Override
public void learning() {
learningMode = true;
}
@Override
public void evaluating() {
learningMode = false;
}
@Override
public void backwards(T input, T dout,
T gradientInput, List gradientParameters) {
if( shapeInput == null )
throw new IllegalArgumentException("Must initialize first!");
if( !learningMode )
throw new IllegalArgumentException("Must be in learning mode ot invoke backwards");
TensorOps.checkShape("input",-1,shapeInput,input.getShape(),true);
TensorOps.checkShape("dout", -1, shapeOutput, dout.getShape(),true);
TensorOps.checkShape("gradientInput",-1,shapeInput,gradientInput.getShape(),true);
TensorOps.checkShape("gradientParameters",shapeParameters,(List)gradientParameters,false);
_backwards(input,dout,gradientInput,gradientParameters);
}
protected abstract void _backwards(T input, T dout, T gradientInput, List gradientParameters);
@Override
public boolean isLearning() {
return learningMode;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy