
deepboof.impl.backward.standard.DActivationSigmoid_F64 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of learning Show documentation
Show all versions of learning Show documentation
Trainer Agnostic Deep Learning
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.backward.standard;
import deepboof.backward.DActivationSigmoid;
import deepboof.tensors.Tensor_F64;
import java.util.List;
/**
* Implementation of {@link DActivationSigmoid} for {@link Tensor_F64}. Saves the sigmoid computed
* on the forward pass to avoid recomputing the sigmoid on the backwards pass.
*
* @author Peter Abeles
*/
public class DActivationSigmoid_F64 extends ElementWiseDFunction
implements DActivationSigmoid {
// storage for the previously computed sigmoid results
Tensor_F64 memorySigmoid = new Tensor_F64();
@Override
public void _forward(Tensor_F64 input, Tensor_F64 output) {
memorySigmoid.reshape(input.shape);
int length = input.length();
int indexIn = input.startIndex;
int indexOut = output.startIndex;
int indexMem = memorySigmoid.startIndex;
for (int i = 0; i < length; i++) {
double value = input.d[indexIn+i];
// compute and save the sigmoid for each element
memorySigmoid.d[indexMem+i] = output.d[indexOut+i] = 1.0/(1.0 + Math.exp(-value));
}
}
@Override
protected void _backwards(Tensor_F64 input, Tensor_F64 dout,
Tensor_F64 gradientInput, List gradientParameters) {
int length = gradientInput.length();
int indexDIn = gradientInput.startIndex;
int indexDOut = dout.startIndex;
for (int i = 0; i < length; i++) {
double sigmoid = memorySigmoid.d[i];
// the sigmoid derivative can be computed using the original sigmoid
gradientInput.d[indexDIn++] = sigmoid*(1.0-sigmoid)*dout.d[indexDOut++];
}
}
@Override
public Class getTensorType() {
return Tensor_F64.class;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy