
deepboof.impl.backward.standard.DFunctionDropOut_F64 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of learning Show documentation
Show all versions of learning Show documentation
Trainer Agnostic Deep Learning
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.backward.standard;
import deepboof.backward.DFunctionDropOut;
import deepboof.misc.TensorOps_F64;
import deepboof.tensors.Tensor_F64;
import java.util.List;
import java.util.Random;
/**
* Implementation of {@link DFunctionDropOut} for {@link Tensor_F64}
*
* @author Peter Abeles
*/
public class DFunctionDropOut_F64 extends BaseDFunction implements DFunctionDropOut {
Random random;
// Specifies chance of a neuron being dropped from 0 to 1.0
double dropRate;
// used to indicate if a neuron is turned off or not. Using a double since it should be faster
// than adding conditional statements (need to verify this)
Tensor_F64 drops = new Tensor_F64();
/**
* Configures drop out
* @param randomSeed random seed used to pick which neurons are dropped
* @param dropRate Fraction of time a neuron is dropped
*/
public DFunctionDropOut_F64( long randomSeed , double dropRate) {
this.random = new Random(randomSeed);
this.dropRate = dropRate;
}
@Override
public void _initialize() {
shapeOutput = shapeInput.clone();
}
@Override
public void _setParameters(List parameters) {}
@Override
public void _forward(Tensor_F64 input, Tensor_F64 output) {
if( learningMode ) {
drops.reshape(input.shape);
int N = drops.length();
int indexIn = input.startIndex;
int indexOut = output.startIndex;
for (int i = 0; i < N; i++) {
double d = drops.d[i] = random.nextDouble() < dropRate ? 0.0 : 1.0;
output.d[indexOut++] = input.d[indexIn++]*d;
}
} else {
TensorOps_F64.elementMult(input,1.0-dropRate,output);
}
}
@Override
public double getDropRate() {
return dropRate;
}
@Override
protected void _backwards(Tensor_F64 input, Tensor_F64 dout, Tensor_F64 gradientInput, List gradientParameters) {
TensorOps_F64.elementMult(dout,drops,gradientInput);
}
@Override
public Class getTensorType() {
return Tensor_F64.class;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy