
deepboof.impl.backward.standard.DFunctionLinear_F64 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of learning Show documentation
Show all versions of learning Show documentation
Trainer Agnostic Deep Learning
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.backward.standard;
import deepboof.backward.DFunctionLinear;
import deepboof.misc.TensorOps;
import deepboof.tensors.Tensor_F64;
import java.util.List;
import static deepboof.impl.forward.standard.FunctionLinear_F64.forwards;
/**
* Implementation of {@link DFunctionLinear} for {@link Tensor_F64}
*
* @author Peter Abeles
*/
public class DFunctionLinear_F64 extends BaseDFunction
implements DFunctionLinear
{
// number of inputs
protected int D;
// number of outputs
protected int M;
Tensor_F64 weight;
Tensor_F64 bias;
public DFunctionLinear_F64(int numberOfOutputs) {
M = numberOfOutputs;
}
@Override
public int getNumberOfOutputs() {
return M;
}
@Override
public void _setParameters(List parameters) {
weight = parameters.get(0);
bias = parameters.get(1);
}
@Override
public void _forward(Tensor_F64 input, Tensor_F64 output) {
forwards(input, output, weight, bias, miniBatchSize, D, M);
}
@Override
protected void _backwards(Tensor_F64 input, Tensor_F64 dout,
Tensor_F64 gradientInput, List gradientParameters) {
// See FunctionLinear for complete documentation
// Input = (N,d[1], ... , d[K])
// Weights = (M,D)
// Bias = (M)
// Output = (N,M)
Tensor_F64 inputD = gradientInput;
Tensor_F64 weightD = gradientParameters.get(0);
Tensor_F64 biasD = gradientParameters.get(1);
inputD.zero();
weightD.zero();
biasD.zero();
for (int stack = 0; stack < miniBatchSize; stack++) {
for (int outputElement = 0; outputElement < M; outputElement++) {
int indexW = outputElement*D + weight.startIndex;
int indexX = stack* D + input.startIndex;
double val_dout = dout.get(stack,outputElement);
// compute gradient of input tensor and weight
int indexXD = stack*D + inputD.startIndex;
int indexWD = outputElement*D + weightD.startIndex;
for (int i = 0; i < D; i++) {
inputD.d[indexXD++] += weight.d[indexW+i]*val_dout;
weightD.d[indexWD++] += input.d[indexX+i]*val_dout;
}
// gradient of bias
biasD.d[biasD.startIndex+outputElement] += val_dout;
}
}
}
@Override
public void _initialize() {
if( shapeInput.length < 1 ) {
throw new IllegalArgumentException("Input tensor shape must have a dimension of at least 1");
}
// compute number of inputs, which is a volume
D = TensorOps.tensorLength(shapeInput);
// shape of weights
shapeParameters.add( new int[]{M,D});
// shape of biases
shapeParameters.add( new int[]{M});
// shape of output
shapeOutput = new int[]{M};
}
@Override
public Class getTensorType() {
return Tensor_F64.class;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy