
deepboof.impl.backward.standard.DSpatialMaxPooling_F64 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of learning Show documentation
Show all versions of learning Show documentation
Trainer Agnostic Deep Learning
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.backward.standard;
import deepboof.backward.DSpatialPadding2D_F64;
import deepboof.forward.ConfigSpatial;
import deepboof.tensors.Tensor_F64;
import deepboof.tensors.Tensor_S32;
import java.util.List;
/**
* Implementation of {@link DSpatialPadding2D_F64} for {@link Tensor_F64} that extends {@link DSpatialWindowChannel}.
*
* Comments:
* dpadding is a 2D tensor of the spatial region only. In the forwards pass the partial coordinate's index is
* saved and the batch + channel indexes are implicit saved in the output index tensor.
*
*
* @author Peter Abeles
*/
public class DSpatialMaxPooling_F64 extends DSpatialWindowChannel {
// reference to dout and the input gradient
Tensor_F64 dout;
// contains the index of the maximum in the local padded image coordinate
Tensor_S32 outputToPaddingIdx = new Tensor_S32();
public DSpatialMaxPooling_F64(ConfigSpatial config, DSpatialPadding2D_F64 padding) {
super(config, padding);
}
@Override
public void _setParameters(List parameters) {}
@Override
public void _forward(Tensor_F64 input, Tensor_F64 output) {
outputToPaddingIdx.reshape(output.getShape());
forwardChannel(input, output);
}
@Override
protected void _backwards(Tensor_F64 input, Tensor_F64 dout, Tensor_F64 gradientInput,
List gradientParameters) {
this.dout = dout;
gradientInput.zero();
backwardsChannel(input, gradientInput);
}
@Override
protected void backwardsAt_inner(Tensor_F64 input, int batch, int channel, int inY, int inX, int outY, int outX) {
// The padded index is only for the spatial region
int paddedIdx = outputToPaddingIdx.d[outputToPaddingIdx.idx(batch,channel,outY,outX)];
dpadding.d[paddedIdx] += dout.get(batch,channel,outY,outX);
}
@Override
protected void backwardsAt_border(DSpatialPadding2D_F64 padded, int batch, int channel, int padY, int padX, int outY, int outX) {
int paddedIdx = outputToPaddingIdx.d[outputToPaddingIdx.idx(batch,channel,outY,outX)];
dpadding.d[paddedIdx] += dout.get(batch,channel,outY,outX);
}
@Override
protected void forwardAt_inner(Tensor_F64 input, int batch, int channel, int inY, int inX, int outY, int outX) {
int inputIndexRow = input.idx(batch,channel,inY,inX);
double max = -Double.MAX_VALUE;
int maxX = -1, maxY = -1;
for (int i = 0; i < HH; i++) {
int inputIndex = inputIndexRow;
for (int j = 0; j < WW; j++ , inputIndex++) {
double value = input.d[inputIndex];
if( value > max ) {
max = value;
maxX = j;
maxY = i;
}
}
inputIndexRow += W;
}
// save the results
output.d[ output.idx(batch,channel,outY,outX) ] = max;
// Compute index of maximum in padded image coordinates
int padRow0 = padding.getPaddingRow0();
int padCol0 = padding.getPaddingCol0();
int index = (inY+maxY+padRow0)*Wp + (inX+maxX+padCol0);
outputToPaddingIdx.d[ outputToPaddingIdx.idx(batch,channel,outY,outX) ] = index;
}
@Override
protected void forwardAt_border(DSpatialPadding2D_F64 padded, int batch, int channel, int padY, int padX, int outY, int outX) {
double max = -Double.MAX_VALUE;
int maxX = -1, maxY = -1;
for (int i = 0; i < HH; i++) {
for (int j = 0; j < WW; j++ ) {
double value = padded.get(batch,channel, padY +i, padX +j);
if( value > max ) {
max = value;
maxX = j;
maxY = i;
}
}
}
// Compute index of maximum in padded image coordinates
int index = (padY+maxY)*Wp + (padX+maxX);
// save the results
output.d[ output.idx(batch,channel,outY,outX) ] = max;
outputToPaddingIdx.d[ outputToPaddingIdx.idx(batch,channel,outY,outX) ] = index;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy