
deepboof.impl.backward.standard.NumericalGradient_F64 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of learning Show documentation
Show all versions of learning Show documentation
Trainer Agnostic Deep Learning
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.backward.standard;
import deepboof.DeepBoofConstants;
import deepboof.Function;
import deepboof.backward.NumericalGradient;
import deepboof.misc.TensorOps_F64;
import deepboof.tensors.Tensor_F64;
import java.util.List;
import static deepboof.misc.TensorOps.WI;
/**
* Implementation of {@link NumericalGradient} for {@link Tensor_F64}
*
* @author Peter Abeles
*/
public class NumericalGradient_F64 implements NumericalGradient
{
Function function;
// sampling distance
double T = DeepBoofConstants.TEST_TOL_A_F64;
Tensor_F64 output = new Tensor_F64();
// passed in parameters
Tensor_F64 input;
List parameters;
@Override
public void configure(double T) {
if( T <= 0 )
throw new IllegalArgumentException("T must be > 0");
this.T = T;
}
@Override
public void setFunction(Function function) {
this.function = function;
}
@Override
public void differentiate(Tensor_F64 input, List parameters, Tensor_F64 dout,
Tensor_F64 gradientInput, List gradientParameters)
{
int N = input.length(0);
output.reshape( WI(N,function.getOutputShape()) );
this.input = input;
this.parameters = parameters;
process(input,dout,gradientInput);
for (int i = 0; i < parameters.size(); i++) {
process(parameters.get(i),dout,gradientParameters.get(i));
}
}
/**
* Computes the gradient for a specific tensor
*/
private void process( Tensor_F64 target , Tensor_F64 dout , Tensor_F64 gradientTarget ) {
int length = target.length();
for (int i = 0; i < length; i++) {
int indexTarget = target.startIndex + i;
double v = target.d[indexTarget];
// value in forward direction
target.d[indexTarget] = v + T;
function.setParameters(parameters);
function.forward(input,output);
TensorOps_F64.elementMult(output,dout,output);
double plus_T = TensorOps_F64.elementSum(output);
// value in backwards direction
target.d[indexTarget] = v - T;
function.setParameters(parameters);
function.forward(input,output);
TensorOps_F64.elementMult(output,dout,output);
double minus_T = TensorOps_F64.elementSum(output);
// undo the changes
target.d[indexTarget] = v;
// compute derivative and save the results
int indexGradient = gradientTarget.startIndex+i;
gradientTarget.d[indexGradient] = (plus_T-minus_T)/(2.0*T);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy