deepboof.impl.forward.standard.ActivationReLU_F32 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of main Show documentation
Show all versions of main Show documentation
Trainer Agnostic Deep Learning
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.forward.standard;
import deepboof.forward.ActivationReLU;
import deepboof.tensors.Tensor_F32;
/**
* Implementation of {@link ActivationReLU} for {@link Tensor_F32}.
*
* @author Peter Abeles
*/
public class ActivationReLU_F32 extends ElementWiseFunction
implements ActivationReLU {
@Override
public void _forward(Tensor_F32 input, Tensor_F32 output) {
_relu_forwards(input, output);
}
public static void _relu_forwards(Tensor_F32 input, Tensor_F32 output) {
int length = input.length();
int indexIn = input.startIndex;
int indexOut = output.startIndex;
for (int i = 0; i < length; i++) {
float value = input.d[indexIn+i];
if( value <= 0 )
output.d[indexOut+i] = 0;
else
output.d[indexOut+i] = value;
}
}
@Override
public Class getTensorType() {
return Tensor_F32.class;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy