deepboof.impl.forward.standard.FunctionBatchNorm_F32 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of main Show documentation
Show all versions of main Show documentation
Trainer Agnostic Deep Learning
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.forward.standard;
import deepboof.DeepBoofConstants;
import deepboof.forward.FunctionBatchNorm;
import deepboof.misc.TensorOps;
import deepboof.tensors.Tensor_F32;
import java.util.List;
/**
* Implementation of {@link FunctionBatchNorm} for {@link Tensor_F32}.
*
* @author Peter Abeles
*/
public class FunctionBatchNorm_F32
extends BaseFunction
implements FunctionBatchNorm
{
protected boolean requiresGammaBeta;
// internal copy of parameters with variance modified for performance. precomputes inverse of stdev + EPS
protected Tensor_F32 params = new Tensor_F32(0);
protected float EPS = DeepBoofConstants.TEST_TOL_F32*0.1f;
public FunctionBatchNorm_F32(boolean requiresGammaBeta) {
this.requiresGammaBeta = requiresGammaBeta;
}
@Override
public void _initialize() {
this.shapeOutput = shapeInput.clone();
int shapeParam[] = TensorOps.WI( shapeInput, requiresGammaBeta ? 4 : 2 );
this.shapeParameters.add(shapeParam);
params.reshape(shapeParam);
}
@Override
public void _setParameters(List parameters) {
params.setTo(parameters.get(0));
int N = params.length();
int stride = requiresGammaBeta ? 4 : 2;
for (int i = 1; i < N; i += stride) {
params.d[i] = 1.0f / (float)Math.sqrt(params.d[i] + EPS);
}
}
@Override
public void _forward(Tensor_F32 input, Tensor_F32 output) {
if( input.getDimension() <= 1 ) {
throw new IllegalArgumentException("Input tensor must be at least 2D. First dimension of batch.");
}
int D = TensorOps.outerLength(input.shape,1);
int indexIn = input.startIndex;
int indexOut = output.startIndex;
if( requiresGammaBeta ) {
for (int batch = 0; batch < miniBatchSize; batch++) {
int indexP = params.startIndex;
int end = indexIn + D;
while (indexIn < end) {
float mean = params.d[indexP++];
float inv_stdev_eps = params.d[indexP++];
float gamma = params.d[indexP++];
float beta = params.d[indexP++];
output.d[indexOut++] = (input.d[indexIn++] - mean)*(gamma * inv_stdev_eps) + beta;
}
}
} else {
for (int stack = 0; stack < miniBatchSize; stack++) {
int indexP = params.startIndex;
int end = indexIn + D;
while (indexIn < end) {
float mean = params.d[indexP++];
float inv_stdev_eps = params.d[indexP++];
output.d[indexOut++] = (input.d[indexIn++] - mean) * inv_stdev_eps;
}
}
}
}
@Override
public /**/double getEPS() {
return EPS;
}
@Override
public void setEPS( /**/double EPS) {
this.EPS = (float)EPS;
}
@Override
public boolean hasGammaBeta() {
return requiresGammaBeta;
}
@Override
public Class getTensorType() {
return Tensor_F32.class;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy