deepboof.impl.forward.standard.FunctionLinear_F32 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of main Show documentation
Show all versions of main Show documentation
Trainer Agnostic Deep Learning
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.forward.standard;
import deepboof.forward.FunctionLinear;
import deepboof.misc.TensorOps;
import deepboof.tensors.Tensor_F32;
import java.util.List;
/**
* Implementation of {@link FunctionLinear} for {@link Tensor_F32}.
*
* @author Peter Abeles
*/
public class FunctionLinear_F32 extends BaseFunction
implements FunctionLinear {
// number of inputs
protected int D;
// number of outputs
protected int M;
Tensor_F32 weight;
Tensor_F32 bias;
public FunctionLinear_F32(int numberOfOutputs) {
M = numberOfOutputs;
}
@Override
public void _forward(Tensor_F32 input, Tensor_F32 output) {
forwards(input, output, weight, bias, miniBatchSize, D, M);
}
public static void forwards(Tensor_F32 input, Tensor_F32 output,
Tensor_F32 weight, Tensor_F32 bias,
int miniBatchSize, int D, int M)
{
// See FunctionLinear for complete documentation
// Input = (N,d[1], ... , d[K])
// Weights = (M,D)
// Bias = (M)
// Output = (N,M)
for (int stack = 0; stack < miniBatchSize; stack++) {
int indexStartIn = stack* D + input.startIndex;
// perform matrix multiplication, note how the input and weight shape has been selected so that
// a simple for loop is all that is needed.
// Also, remember that tensors are in row major format, which is why the input can be treated
// as a continuous array here
for (int outputElement = 0; outputElement < M; outputElement++) {
int indexW = outputElement* D + weight.startIndex;
float b = bias.d[outputElement + bias.startIndex];
int indexIn = indexStartIn;
int end = indexIn + D;
float sum = 0;
while( indexIn < end ) {
sum += input.d[indexIn++]*weight.d[indexW++];
}
int indexOut = stack* M + outputElement + output.startIndex;
output.d[indexOut] = sum + b;
}
}
}
@Override
public void _initialize() {
if( shapeInput.length < 1 ) {
throw new IllegalArgumentException("Input tensor shape must have a dimension of at least 1");
}
// compute number of inputs, which is a volume
D = TensorOps.tensorLength(shapeInput);
// shape of weights
shapeParameters.add( new int[]{M,D});
// shape of biases
shapeParameters.add( new int[]{M});
// shape of output
shapeOutput = new int[]{M};
}
@Override
public void _setParameters(List parameters) {
weight = parameters.get(0);
bias = parameters.get(1);
}
@Override
public int getNumberOfOutputs() {
return D;
}
@Override
public Class getTensorType() {
return Tensor_F32.class;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy