deepboof.impl.forward.standard.SpatialAveragePooling_F64 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of main Show documentation
Show all versions of main Show documentation
Trainer Agnostic Deep Learning
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.forward.standard;
import deepboof.forward.ConfigSpatial;
import deepboof.forward.SpatialAveragePooling;
import deepboof.forward.SpatialPadding2D_F64;
import deepboof.tensors.Tensor_F64;
import java.util.List;
/**
* Implementation of {@link SpatialAveragePooling} for {@link Tensor_F64}.
*
* @author Peter Abeles
*/
public class SpatialAveragePooling_F64
extends SpatialWindowChannel
implements SpatialAveragePooling
{
// number of elements inside the pooling region
protected double poolingSize;
public SpatialAveragePooling_F64(ConfigSpatial config , SpatialPadding2D_F64 padding ) {
super(config, padding);
}
@Override
public void _initialize() {
super._initialize();
if( shapeInput.length != 3 )
throw new IllegalArgumentException("Expected 3D spatial tensor");
shapeOutput = shapeInput.clone();
shapeOutput[1] = Ho;
shapeOutput[2] = Wo;
poolingSize = WW*HH;
}
@Override
public void _setParameters(List parameters) {}
@Override
public void _forward(Tensor_F64 input, Tensor_F64 output) {
forwardChannel(input, output);
}
@Override
protected void forwardAt_inner(Tensor_F64 input, int batch, int channel, int inY, int inX, int outY, int outX) {
int inputIndexRow = input.idx(batch,channel,inY,inX);
double sum = 0;
for (int j = 0; j < HH; j++) {
int inputIndex = inputIndexRow;
for (int i = 0; i < WW; i++ ) {
sum += input.d[inputIndex++];
}
inputIndexRow += W;
}
// save the results
output.d[ output.idx(batch,channel,outY,outX) ] = sum/poolingSize;
}
@Override
protected void forwardAt_border(SpatialPadding2D_F64 padded, int batch, int channel, int padY, int padX, int outY, int outX) {
int row0 = padY;
int row1 = padY + HH;
row0 += padded.getClippingOffsetRow(row0);
row1 += padded.getClippingOffsetRow(row1);
int col0 = padX;
int col1 = padX + WW;
col0 += padded.getClippingOffsetCol(col0);
col1 += padded.getClippingOffsetCol(col1);
double sum = 0;
for (int j = row0; j < row1; j++) {
for (int i = col0; i < col1; i++ ) {
sum += padded.get(batch,channel, j, i);
}
}
// save the results
output.d[ output.idx(batch,channel,outY,outX) ] = sum/((row1-row0)*(col1-col0));
}
@Override
public Class getTensorType() {
return Tensor_F64.class;
}
@Override
public ConfigSpatial getConfiguration() {
return config;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy