deepboof.misc.TensorFactory Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of main Show documentation
Show all versions of main Show documentation
Trainer Agnostic Deep Learning
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.misc;
import deepboof.Tensor;
import deepboof.tensors.Tensor_F32;
import deepboof.tensors.Tensor_F64;
import java.util.Random;
/**
* @author Peter Abeles
*/
@SuppressWarnings("unchecked")
public class TensorFactory {
Class tensorType;
public TensorFactory(Class tensorType) {
this.tensorType = tensorType;
}
public T create( int...shape) {
if( tensorType == Tensor_F64.class ) {
return (T) new Tensor_F64(shape);
} else if( tensorType == Tensor_F32.class ) {
return (T)new Tensor_F32(shape);
} else {
throw new IllegalArgumentException("Unknown/unsupported tensor type "+tensorType.getSimpleName());
}
}
/**
* Creates a random tensor with the specified shape and values from -1 to 1
*
* @param rand Random number generator
* @param subTensor Should it be a sub-tensor or not?
* @param minibatch Number of mini-batches
* @param shape Shape of the tensor, without minibatch
* @return The random tensor
*/
public T randomM(Random rand , boolean subTensor , int minibatch , int shape[] ) {
int modshape[] = new int[ shape.length + 1];
modshape[0] = minibatch;
System.arraycopy(shape,0,modshape,1,shape.length);
if( tensorType == Tensor_F64.class ) {
return (T) TensorFactory_F64.random(rand, subTensor, modshape);
} else if( tensorType == Tensor_F32.class ) {
return (T) TensorFactory_F32.random(rand,subTensor,modshape);
} else {
throw new IllegalArgumentException("Unknown/unsupported tensor type "+tensorType.getSimpleName());
}
}
public T random(Random rand , boolean subTensor , int ...shape ) {
if( tensorType == Tensor_F64.class ) {
return (T) TensorFactory_F64.random(rand,subTensor,shape);
} else if( tensorType == Tensor_F32.class ) {
return (T) TensorFactory_F32.random(rand,subTensor,shape);
} else {
throw new IllegalArgumentException("Unknown/unsupported tensor type "+tensorType.getSimpleName());
}
}
public T random( Random rand , boolean subTensor , double min , double max , int ...shape ) {
if( tensorType == Tensor_F64.class ) {
return (T) TensorFactory_F64.randomMM(rand,subTensor,min,max,shape);
} else if( tensorType == Tensor_F32.class ) {
return (T) TensorFactory_F32.randomMM(rand,subTensor,(float)min,(float)max,shape);
} else {
throw new IllegalArgumentException("Unknown/unsupported tensor type "+tensorType.getSimpleName());
}
}
public Class getTensorType() {
return tensorType;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy