deepboof.misc.TensorFactory_F64 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of main Show documentation
Show all versions of main Show documentation
Trainer Agnostic Deep Learning
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.misc;
import deepboof.tensors.Tensor_F64;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
/**
* Various functions for unit tests
*
* @author Peter Abeles
*/
public class TensorFactory_F64 {
/**
* Generate a zeros tensor with the option for a sub-tensor
*
* @param rand If you wish to generate a sub-matrix pass in this RNG and it will randomly offset the data. null
* for regular tensor
* @param shape Shape of the tensor
* @return tensor
*/
public static Tensor_F64 zeros( Random rand, int ...shape ) {
Tensor_F64 out = new Tensor_F64();
if( rand != null ) {
out.subtensor = true;
out.startIndex = rand.nextInt(20)+1;
}
out.d = new double[ out.startIndex + TensorOps.tensorLength(shape)];
out.reshape(shape);
return out;
}
/**
* Creates a random tensor with the specified shape and values from -1 to 1
*
* @param rand Random number generator
* @param subTensor Should it be a sub-tensor or not?
* @param shape Shape of the tensor
* @return The random tensor
*/
public static Tensor_F64 random(Random rand , boolean subTensor , int ...shape ) {
return randomMM(rand,subTensor,-1.0, 1.0, shape);
}
/**
* Creates a random tensor with the specified shape and value range
*
* @param rand Random number generator
* @param subTensor Should it be a sub-tensor or not?
* @param min Minimum value of each element
* @param max Maximum value of each element
* @param shape Shape of the tensor
* @return The random tensor
*/
public static Tensor_F64 randomMM( Random rand , boolean subTensor , double min , double max , int ...shape ) {
Tensor_F64 out = zeros(subTensor?rand:null,shape);
randomMM(rand,min,max,out);
return out;
}
/**
* Creates a random tensor with the specified shape and value range
*
* @param rand Random number generator
* @param subTensor Should it be a sub-tensor or not?
* @param min Minimum value of each element
* @param max Maximum value of each element
* @param shapes Shapes of the tensors
* @return The random tensor
*/
public static List randomMM(Random rand , boolean subTensor , double min , double max , List shapes ) {
List out = new ArrayList();
for( int[]shape : shapes ) {
out.add( randomMM(rand,subTensor,min,max,shape));
}
return out;
}
/**
* Fills the tensor with random numbers selected from a uniform distribution.
*
* @param rand Random number generator
* @param min min value, inclusive
* @param max max value, inclusive
* @param tensor Tensor that is to be filled.
*/
public static void randomMM( Random rand , double min , double max , Tensor_F64 tensor ) {
int N = tensor.length();
for (int i = 0; i < N; i++) {
tensor.d[ tensor.startIndex + i ] = rand.nextDouble()*(max-min) + min;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy