
deepboof.impl.forward.standard.BaseFunction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of main Show documentation
Show all versions of main Show documentation
Trainer Agnostic Deep Learning
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.impl.forward.standard;
import deepboof.Function;
import deepboof.Tensor;
import deepboof.misc.TensorOps;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
* Base class which implements common functionality between all {@link Function functions}
*
* @author Peter Abeles
*/
@SuppressWarnings("unchecked")
public abstract class BaseFunction implements Function {
protected int [] shapeInput = new int[0];
protected List shapeParameters = new ArrayList<>();
protected int [] shapeOutput = new int[0];
protected List parameters;
/**
* Number of inputs in the mini-batch
*/
protected int miniBatchSize;
@Override
public void initialize(int... shapeInput) {
this.shapeInput = shapeInput.clone();
shapeParameters.clear();
Arrays.fill(shapeOutput,-1);
_initialize();
}
public abstract void _initialize();
@Override
public void setParameters(List parameters) {
TensorOps.checkShape("parameters", shapeParameters, (List) parameters, false);
this.parameters = new ArrayList<>(parameters);
_setParameters(parameters);
}
public abstract void _setParameters(List parameters);
@Override
public List getParameters() {
return parameters;
}
@Override
public void forward(T input, T output) {
if( shapeInput == null )
throw new IllegalArgumentException("Must initialize first!");
TensorOps.checkShape("input",-1,shapeInput,input.getShape(),true);
TensorOps.checkShape("output", -1,shapeOutput,output.getShape(),true);
// see if the number of stacked inputs is the same in input and output
miniBatchSize = input.length(0);
if( output.length(0) != miniBatchSize) {
int M = output.length(0);
throw new IllegalArgumentException("Dimension 0 in the output is "+M+
" and does not match input dimension 0 of "+ miniBatchSize);
}
_forward(input, output);
}
public abstract void _forward(T input, T output);
@Override
public List getParameterShapes() {
return shapeParameters;
}
@Override
public int[] getOutputShape() {
return shapeOutput;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy