
deepboof.tensors.Tensor_S32 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of main Show documentation
Show all versions of main Show documentation
Trainer Agnostic Deep Learning
/*
* Copyright (c) 2016, Peter Abeles. All Rights Reserved.
*
* This file is part of DeepBoof
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package deepboof.tensors;
import deepboof.Tensor;
import java.util.Arrays;
/**
* @author Peter Abeles
*/
public class Tensor_S32 extends Tensor {
public int d[] = new int[0];
public Tensor_S32( int... shape ) {
reshape(shape);
}
public Tensor_S32(){}
@Override
public double getDouble(int... coordinate) {
return d[idx(coordinate)];
}
@Override
public Object getData() {
return d;
}
@Override
public void setData(Object data) {
this.d = (int[])data;
}
@Override
protected void innerArrayGrow(int N) {
if( d.length < N ) {
d = new int[N];
}
}
@Override
protected int innerArrayLength() {
return d.length;
}
@Override
public Tensor_S32 create(int... shape) {
return new Tensor_S32(shape);
}
@Override
public void zero() {
Arrays.fill(d,startIndex,startIndex+length(),0);
}
@Override
public Class getDataType() {
return int.class;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy