![JAR search and dependency download from the Maven repository](/logo.png)
org.deeplearning4j.arbiter.task.MultiLayerNetworkTaskCreator Maven / Gradle / Ivy
/*-
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.arbiter.task;
import lombok.AllArgsConstructor;
import lombok.NoArgsConstructor;
import org.apache.commons.lang3.exception.ExceptionUtils;
import org.deeplearning4j.arbiter.DL4JConfiguration;
import org.deeplearning4j.arbiter.listener.DL4JArbiterStatusReportingListener;
import org.deeplearning4j.arbiter.optimize.api.Candidate;
import org.deeplearning4j.arbiter.optimize.api.OptimizationResult;
import org.deeplearning4j.arbiter.optimize.api.TaskCreator;
import org.deeplearning4j.arbiter.optimize.api.data.DataProvider;
import org.deeplearning4j.arbiter.optimize.api.evaluation.ModelEvaluator;
import org.deeplearning4j.arbiter.optimize.api.score.ScoreFunction;
import org.deeplearning4j.arbiter.optimize.runner.CandidateInfo;
import org.deeplearning4j.arbiter.optimize.runner.CandidateStatus;
import org.deeplearning4j.arbiter.optimize.runner.listener.StatusListener;
import org.deeplearning4j.arbiter.scoring.util.ScoreUtil;
import org.deeplearning4j.earlystopping.EarlyStoppingConfiguration;
import org.deeplearning4j.earlystopping.EarlyStoppingResult;
import org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import java.util.List;
import java.util.concurrent.Callable;
/**
* Task creator for MultiLayerNetworks
*
* @author Alex Black
*/
@AllArgsConstructor
@NoArgsConstructor
public class MultiLayerNetworkTaskCreator implements TaskCreator {
private ModelEvaluator modelEvaluator;
@Override
public Callable create(Candidate candidate, DataProvider dataProvider,
ScoreFunction scoreFunction, List statusListeners) {
return new DL4JLearningTask(candidate, dataProvider, scoreFunction, modelEvaluator, statusListeners);
}
private static class DL4JLearningTask implements Callable {
private Candidate candidate;
private DataProvider dataProvider;
private ScoreFunction scoreFunction;
private ModelEvaluator modelEvaluator;
private List listeners;
private long startTime;
public DL4JLearningTask(Candidate candidate, DataProvider dataProvider, ScoreFunction scoreFunction,
ModelEvaluator modelEvaluator, List listeners) {
this.candidate = candidate;
this.dataProvider = dataProvider;
this.scoreFunction = scoreFunction;
this.modelEvaluator = modelEvaluator;
this.listeners = listeners;
}
@Override
public OptimizationResult call() throws Exception {
try {
return callHelper();
} catch (Exception e) {
String stackTrace = ExceptionUtils.getStackTrace(e);
CandidateInfo ci = new CandidateInfo(candidate.getIndex(), CandidateStatus.Failed, null, startTime,
null, null, candidate.getFlatParameters(), stackTrace);
return new OptimizationResult(candidate, null, null, candidate.getIndex(), null, ci);
}
}
private OptimizationResult callHelper() throws Exception {
startTime = System.currentTimeMillis();
CandidateInfo ci = new CandidateInfo(candidate.getIndex(), CandidateStatus.Running, null,
System.currentTimeMillis(), null, null, candidate.getFlatParameters(), null);
//Create network
MultiLayerNetwork net = new MultiLayerNetwork(
((DL4JConfiguration) candidate.getValue()).getMultiLayerConfiguration());
net.init();
if (listeners != null) {
net.setListeners(new DL4JArbiterStatusReportingListener(listeners, ci));
}
//Early stopping or fixed number of epochs:
DataSetIterator dataSetIterator =
ScoreUtil.getIterator(dataProvider.trainData(candidate.getDataParameters()));
EarlyStoppingConfiguration esConfig =
((DL4JConfiguration) candidate.getValue()).getEarlyStoppingConfiguration();
EarlyStoppingResult esResult = null;
if (esConfig != null) {
EarlyStoppingTrainer trainer = new EarlyStoppingTrainer(esConfig, net, dataSetIterator, null);
esResult = trainer.fit();
net = esResult.getBestModel(); //Can return null if failed OR if
switch (esResult.getTerminationReason()) {
case Error:
ci.setCandidateStatus(CandidateStatus.Failed);
ci.setExceptionStackTrace(esResult.getTerminationDetails());
break;
case IterationTerminationCondition:
case EpochTerminationCondition:
ci.setCandidateStatus(CandidateStatus.Complete);
break;
}
} else {
//Fixed number of epochs
int nEpochs = ((DL4JConfiguration) candidate.getValue()).getNumEpochs();
for (int i = 0; i < nEpochs; i++) {
net.fit(dataSetIterator);
}
ci.setCandidateStatus(CandidateStatus.Complete);
}
Object additionalEvaluation = null;
if (esConfig != null && esResult.getTerminationReason() != EarlyStoppingResult.TerminationReason.Error) {
additionalEvaluation =
(modelEvaluator != null ? modelEvaluator.evaluateModel(net, dataProvider) : null);
}
Double score = null;
if (net != null) {
score = scoreFunction.score(net, dataProvider, candidate.getDataParameters());
ci.setScore(score);
}
return new OptimizationResult(candidate, net, score, candidate.getIndex(), additionalEvaluation, ci);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy