org.deeplearning4j.arbiter.layers.VariationalAutoencoderLayerSpace Maven / Gradle / Ivy
package org.deeplearning4j.arbiter.layers;
import lombok.AccessLevel;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import org.deeplearning4j.arbiter.optimize.parameter.FixedValue;
import org.deeplearning4j.arbiter.util.LeafUtils;
import org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper;
import org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution;
import org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.LossFunctions;
/**
* Layer space for {@link VariationalAutoencoder}
*
* @author Alex Black
*/
@Data
@EqualsAndHashCode(callSuper = true)
@NoArgsConstructor(access = AccessLevel.PRIVATE) //For Jackson JSON/YAML deserialization
public class VariationalAutoencoderLayerSpace extends BasePretrainNetworkLayerSpace {
private ParameterSpace encoderLayerSizes;
private ParameterSpace decoderLayerSizes;
private ParameterSpace outputDistribution;
private ParameterSpace pzxActivationFn;
private ParameterSpace numSamples;
protected VariationalAutoencoderLayerSpace(Builder builder) {
super(builder);
this.encoderLayerSizes = builder.encoderLayerSizes;
this.decoderLayerSizes = builder.decoderLayerSizes;
this.outputDistribution = builder.outputDistribution;
this.pzxActivationFn = builder.pzxActivationFn;
this.numSamples = builder.numSamples;
this.numParameters = LeafUtils.countUniqueParameters(collectLeaves());
}
@Override
public VariationalAutoencoder getValue(double[] parameterValues) {
VariationalAutoencoder.Builder b = new VariationalAutoencoder.Builder();
setLayerOptionsBuilder(b, parameterValues);
return b.build();
}
protected void setLayerOptionsBuilder(VariationalAutoencoder.Builder builder, double[] values) {
super.setLayerOptionsBuilder(builder, values);
if (encoderLayerSizes != null)
builder.encoderLayerSizes(encoderLayerSizes.getValue(values));
if (decoderLayerSizes != null)
builder.decoderLayerSizes(decoderLayerSizes.getValue(values));
if (outputDistribution != null)
builder.reconstructionDistribution(outputDistribution.getValue(values));
if (pzxActivationFn != null)
builder.pzxActivationFn(pzxActivationFn.getValue(values));
if (numSamples != null)
builder.numSamples(numSamples.getValue(values));
}
@Override
public String toString() {
return toString(", ");
}
@Override
public String toString(String delim) {
StringBuilder sb = new StringBuilder("VariationalAutoencoderLayerSpace(");
if (encoderLayerSizes != null)
sb.append("encoderLayerSizes: ").append(encoderLayerSizes).append(delim);
if (decoderLayerSizes != null)
sb.append("decoderLayerSizes: ").append(decoderLayerSizes).append(delim);
if (outputDistribution != null)
sb.append("reconstructionDistribution: ").append(outputDistribution).append(delim);
if (pzxActivationFn != null)
sb.append("pzxActivationFn: ").append(pzxActivationFn).append(delim);
if (numSamples != null)
sb.append("numSamples: ").append(numSamples).append(delim);
sb.append(super.toString(delim)).append(")");
return sb.toString();
}
public static class Builder extends BasePretrainNetworkLayerSpace.Builder {
private ParameterSpace encoderLayerSizes;
private ParameterSpace decoderLayerSizes;
private ParameterSpace outputDistribution;
private ParameterSpace pzxActivationFn;
private ParameterSpace numSamples;
public Builder encoderLayerSizes(int... encoderLayerSizes) {
return encoderLayerSizes(new FixedValue<>(encoderLayerSizes));
}
public Builder encoderLayerSizes(ParameterSpace encoderLayerSizes) {
this.encoderLayerSizes = encoderLayerSizes;
return this;
}
public Builder decoderLayerSizes(int... decoderLayerSizes) {
return decoderLayerSizes(new FixedValue<>(decoderLayerSizes));
}
public Builder decoderLayerSizes(ParameterSpace decoderLayerSizes) {
this.decoderLayerSizes = decoderLayerSizes;
return this;
}
public Builder reconstructionDistribution(ReconstructionDistribution distribution) {
return reconstructionDistribution(new FixedValue<>(distribution));
}
public Builder reconstructionDistribution(ParameterSpace distribution) {
this.outputDistribution = distribution;
return this;
}
public Builder lossFunction(IActivation outputActivationFn, LossFunctions.LossFunction lossFunction) {
return lossFunction(outputActivationFn, lossFunction.getILossFunction());
}
public Builder lossFunction(Activation outputActivationFn, LossFunctions.LossFunction lossFunction) {
return lossFunction(outputActivationFn.getActivationFunction(), lossFunction.getILossFunction());
}
public Builder lossFunction(IActivation outputActivationFn, ILossFunction lossFunction) {
return reconstructionDistribution(new LossFunctionWrapper(outputActivationFn, lossFunction));
}
public Builder pzxActivationFn(IActivation activationFunction) {
return pzxActivationFn(new FixedValue<>(activationFunction));
}
public Builder pzxActivationFn(ParameterSpace activationFunction) {
this.pzxActivationFn = activationFunction;
return this;
}
public Builder pzxActivationFunction(Activation activation) {
return pzxActivationFn(activation.getActivationFunction());
}
public Builder numSamples(int numSamples) {
return numSamples(new FixedValue<>(numSamples));
}
public Builder numSamples(ParameterSpace numSamples) {
this.numSamples = numSamples;
return this;
}
@Override
public E build() {
return (E) new VariationalAutoencoderLayerSpace(this);
}
}
}