org.deeplearning4j.arbiter.layers.BaseConvolutionLayerSpace Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.layers;
import lombok.AccessLevel;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import org.deeplearning4j.arbiter.optimize.parameter.FixedValue;
import org.deeplearning4j.arbiter.util.LeafUtils;
import org.deeplearning4j.nn.conf.ConvolutionMode;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.FeedForwardLayer;
/**
* Layer space for convolutional layers
*
* @author Alex Black
*/
@Data
@EqualsAndHashCode(callSuper = true)
@NoArgsConstructor(access = AccessLevel.PROTECTED) //For Jackson JSON/YAML deserialization
public abstract class BaseConvolutionLayerSpace extends FeedForwardLayerSpace {
protected ParameterSpace dilation;
protected ParameterSpace kernelSize;
protected ParameterSpace stride;
protected ParameterSpace padding;
protected ParameterSpace convolutionMode;
protected ParameterSpace hasBias;
protected BaseConvolutionLayerSpace(Builder builder) {
super(builder);
this.dilation = builder.dilation;
this.kernelSize = builder.kernelSize;
this.stride = builder.stride;
this.padding = builder.padding;
this.convolutionMode = builder.convolutionMode;
this.hasBias = builder.hasBias;
this.numParameters = LeafUtils.countUniqueParameters(collectLeaves());
}
protected void setLayerOptionsBuilder(ConvolutionLayer.BaseConvBuilder> builder, double[] values) {
super.setLayerOptionsBuilder(builder, values);
if (dilation != null)
builder.dilation(dilation.getValue(values));
if (kernelSize != null)
builder.kernelSize(kernelSize.getValue(values));
if (stride != null)
builder.stride(stride.getValue(values));
if (padding != null)
builder.padding(padding.getValue(values));
if (convolutionMode != null)
builder.convolutionMode(convolutionMode.getValue(values));
if (hasBias != null)
builder.hasBias(hasBias.getValue(values));
}
@Override
public String toString() {
return toString(", ");
}
@Override
public String toString(String delim) {
StringBuilder sb = new StringBuilder();
if (dilation != null)
sb.append("dilation: ").append(dilation).append(delim);
if (kernelSize != null)
sb.append("kernelSize: ").append(kernelSize).append(delim);
if (stride != null)
sb.append("stride: ").append(stride).append(delim);
if (padding != null)
sb.append("padding: ").append(padding).append(delim);
if (convolutionMode != null)
sb.append("convolutionMode: ").append(convolutionMode).append(delim);
if (hasBias != null)
sb.append("hasBias: ").append(hasBias).append(delim);
sb.append(super.toString(delim));
return sb.toString();
}
public static abstract class Builder extends FeedForwardLayerSpace.Builder {
protected ParameterSpace dilation;
protected ParameterSpace kernelSize;
protected ParameterSpace stride;
protected ParameterSpace padding;
protected ParameterSpace convolutionMode;
protected ParameterSpace hasBias;
public T dilation(int... dilation) {
return dilation(new FixedValue<>(dilation));
}
public T dilation(ParameterSpace dilation) {
this.dilation = dilation;
return (T) this;
}
public T kernelSize(int... kernelSize) {
return kernelSize(new FixedValue<>(kernelSize));
}
public T kernelSize(ParameterSpace kernelSize) {
this.kernelSize = kernelSize;
return (T)this;
}
public T stride(int... stride) {
return stride(new FixedValue<>(stride));
}
public T stride(ParameterSpace stride) {
this.stride = stride;
return (T)this;
}
public T padding(int... padding) {
return padding(new FixedValue<>(padding));
}
public T padding(ParameterSpace padding) {
this.padding = padding;
return (T)this;
}
public T convolutionMode(ConvolutionMode convolutionMode) {
return convolutionMode(new FixedValue<>(convolutionMode));
}
public T convolutionMode(ParameterSpace convolutionMode) {
this.convolutionMode = convolutionMode;
return (T)this;
}
public T hasBias(boolean hasBias){
return hasBias(new FixedValue<>(hasBias));
}
public T hasBias(ParameterSpace hasBias){
this.hasBias = hasBias;
return (T)this;
}
}
}