
org.deeplearning4j.iterativereduce.impl.single.WorkerNode Maven / Gradle / Ivy
The newest version!
/*
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.iterativereduce.impl.single;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.RecordReader;
import org.deeplearning4j.scaleout.api.ir.ParameterVectorUpdateable;
import org.deeplearning4j.iterativereduce.runtime.ComputableWorker;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.DeepLearningConfigurable;
import org.deeplearning4j.nn.layers.factory.LayerFactories;
import org.nd4j.linalg.dataset.DataSet;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
import java.util.List;
/**
* Base IterativeReduce worker node
*
* @author josh
*
*/
public class WorkerNode implements ComputableWorker,DeepLearningConfigurable {
private static final Logger LOG = LoggerFactory.getLogger(WorkerNode.class);
private Layer neuralNetwork;
private RecordReader recordParser;
/**
* Run a training pass of a single batch of input records on the DBN
*
* TODO
* - dileneate between pre-train and finetune pass through data
* - how?
*
* - app.iteration.count
* - indicates how many times we're going to call the workers
*
* - tv.floe.metronome.dbn.conf.batchSize=10
* - indicates that we're going to only process 10 records in a call to a worker
*
* - we could either
*
* 1. make a complete pass through the batches in a split between iterations
*
* - tends to skew away from good solutions
*
* 2. parameter average between batches
*
* - better quality, but more network overhead
*
* - if we paramete avg between batches, then our passes over the dataset become
*
* - total number of examples / batch size
*
* - might be pragmatic to let a command line tool calculate iterations
*
* - given we need to know how many fine tune passes to make as well
*
*
*
*
*
*
*
*
*/
@Override
public ParameterVectorUpdateable compute() {
try {
while(recordParser.nextKeyValue()) {
DataSet params = (DataSet) recordParser.getCurrentValue();
neuralNetwork.fit(params.getFeatureMatrix());
}
} catch (Exception e) {
e.printStackTrace();
}
return new ParameterVectorUpdateable(neuralNetwork.params());
}
@Override
public void setRecordReader(org.apache.hadoop.mapreduce.RecordReader r) {
this.recordParser = r;
}
@Override
public ParameterVectorUpdateable compute(List arg0) {
return compute();
}
@Override
public ParameterVectorUpdateable getResults() {
return new ParameterVectorUpdateable(neuralNetwork.params());
}
/**
* setup the local DBN instance based on conf params
*
*/
@Override
public void setup(Configuration conf) {
NeuralNetConfiguration conf2 = NeuralNetConfiguration.fromJson(conf.get(NEURAL_NET_CONF));
neuralNetwork = LayerFactories.getFactory(conf2.getLayer()).create(conf2);
}
/**
* Collect the update from the master node and apply it to the local
* parameter vector
*
* TODO: check the state changes of the incoming message!
*
*/
@Override
public void update(ParameterVectorUpdateable masterUpdateUpdateable) {
neuralNetwork.setParams(masterUpdateUpdateable.get());
}
@Override
public void setup(org.canova.api.conf.Configuration conf) {
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy