org.deeplearning4j.conf.NeuralNetConfiguration Maven / Gradle / Ivy
package org.deeplearning4j.conf;
import java.io.Serializable;
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.math3.distribution.RealDistribution;
import org.apache.commons.math3.random.RandomGenerator;
import org.deeplearning4j.nn.HiddenLayer;
import org.deeplearning4j.nn.LogisticRegression;
import org.deeplearning4j.nn.activation.ActivationFunction;
import org.deeplearning4j.nn.activation.Sigmoid;
import org.deeplearning4j.optimize.MultiLayerNetworkOptimizer;
import org.deeplearning4j.transformation.MatrixTransform;
import org.jblas.DoubleMatrix;
public class NeuralNetConfiguration implements Serializable {
/**
*
*/
private static final long serialVersionUID = 8267028988938122369L;
//number of columns in the input matrix
public int nIns;
//the hidden layer sizes at each layer
public int[] hiddenLayerSizes;
//the number of outputs/labels for logistic regression
public int nOuts;
public int nLayers;
//logistic regression output layer (aka the softmax layer) for translating network outputs in to probabilities
public LogisticRegression logLayer;
public RandomGenerator rng;
/* probability distribution for generation of weights */
public RealDistribution dist;
public double momentum = 0.1;
public MultiLayerNetworkOptimizer optimizer;
public ActivationFunction activation = new Sigmoid();
public boolean toDecode;
public double l2 = 0.01;
public boolean shouldInit = true;
public double fanIn = -1;
public int renderWeightsEveryNEpochs = -1;
public boolean useRegularization = true;
protected Map weightTransforms = new HashMap();
protected boolean shouldBackProp = true;
protected boolean forceNumEpochs = false;
public int getnIns() {
return nIns;
}
public void setnIns(int nIns) {
this.nIns = nIns;
}
public int[] getHiddenLayerSizes() {
return hiddenLayerSizes;
}
public void setHiddenLayerSizes(int[] hiddenLayerSizes) {
this.hiddenLayerSizes = hiddenLayerSizes;
}
public int getnOuts() {
return nOuts;
}
public void setnOuts(int nOuts) {
this.nOuts = nOuts;
}
public int getnLayers() {
return nLayers;
}
public void setnLayers(int nLayers) {
this.nLayers = nLayers;
}
public LogisticRegression getLogLayer() {
return logLayer;
}
public void setLogLayer(LogisticRegression logLayer) {
this.logLayer = logLayer;
}
public RandomGenerator getRng() {
return rng;
}
public void setRng(RandomGenerator rng) {
this.rng = rng;
}
public RealDistribution getDist() {
return dist;
}
public void setDist(RealDistribution dist) {
this.dist = dist;
}
public double getMomentum() {
return momentum;
}
public void setMomentum(double momentum) {
this.momentum = momentum;
}
public MultiLayerNetworkOptimizer getOptimizer() {
return optimizer;
}
public void setOptimizer(MultiLayerNetworkOptimizer optimizer) {
this.optimizer = optimizer;
}
public ActivationFunction getActivation() {
return activation;
}
public void setActivation(ActivationFunction activation) {
this.activation = activation;
}
public boolean isToDecode() {
return toDecode;
}
public void setToDecode(boolean toDecode) {
this.toDecode = toDecode;
}
public double getL2() {
return l2;
}
public void setL2(double l2) {
this.l2 = l2;
}
public boolean isShouldInit() {
return shouldInit;
}
public void setShouldInit(boolean shouldInit) {
this.shouldInit = shouldInit;
}
public double getFanIn() {
return fanIn;
}
public void setFanIn(double fanIn) {
this.fanIn = fanIn;
}
public int getRenderWeightsEveryNEpochs() {
return renderWeightsEveryNEpochs;
}
public void setRenderWeightsEveryNEpochs(int renderWeightsEveryNEpochs) {
this.renderWeightsEveryNEpochs = renderWeightsEveryNEpochs;
}
public boolean isUseRegularization() {
return useRegularization;
}
public void setUseRegularization(boolean useRegularization) {
this.useRegularization = useRegularization;
}
public Map getWeightTransforms() {
return weightTransforms;
}
public void setWeightTransforms(Map weightTransforms) {
this.weightTransforms = weightTransforms;
}
public boolean isShouldBackProp() {
return shouldBackProp;
}
public void setShouldBackProp(boolean shouldBackProp) {
this.shouldBackProp = shouldBackProp;
}
public boolean isForceNumEpochs() {
return forceNumEpochs;
}
public void setForceNumEpochs(boolean forceNumEpochs) {
this.forceNumEpochs = forceNumEpochs;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy