org.deeplearning4j.rbm.CRBM Maven / Gradle / Ivy
package org.deeplearning4j.rbm;
import static org.deeplearning4j.util.MatrixUtil.log;
import static org.deeplearning4j.util.MatrixUtil.oneDiv;
import static org.deeplearning4j.util.MatrixUtil.oneMinus;
import static org.deeplearning4j.util.MatrixUtil.uniform;
import static org.jblas.MatrixFunctions.exp;
import org.apache.commons.math3.distribution.RealDistribution;
import org.apache.commons.math3.random.RandomGenerator;
import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.nn.BaseNeuralNetwork;
import org.jblas.DoubleMatrix;
/**
* Continuous Restricted Boltzmann Machine
* @author Adam Gibson
*
*/
public class CRBM extends RBM {
/**
*
*/
private static final long serialVersionUID = 598767790003731193L;
public CRBM() {
super();
}
public CRBM(DoubleMatrix input, int n_visible, int n_hidden,
DoubleMatrix W, DoubleMatrix hbias, DoubleMatrix vbias,
RandomGenerator rng, double fanIn, RealDistribution dist) {
super(input, n_visible, n_hidden, W, hbias, vbias, rng, fanIn, dist);
}
public CRBM(int nVisible, int nHidden, DoubleMatrix W, DoubleMatrix hbias,
DoubleMatrix vbias, RandomGenerator rng, double fanIn,
RealDistribution dist) {
super(nVisible, nHidden, W, hbias, vbias, rng, fanIn, dist);
}
@Override
public DoubleMatrix propDown(DoubleMatrix h) {
return h.mmul(W.transpose()).addRowVector(vBias);
}
@Override
public Pair sampleVGivenH(DoubleMatrix h) {
DoubleMatrix aH = propDown(h);
DoubleMatrix en = exp(aH.neg());
DoubleMatrix ep = exp(aH);
DoubleMatrix v1Mean = oneDiv(oneMinus(en).sub(oneDiv(aH)));
DoubleMatrix v1Sample = log(
oneMinus(
uniform(rng,v1Mean.rows,v1Mean.columns)
.mul(oneMinus(ep)))
).div(aH);
return new Pair(v1Mean,v1Sample);
}
public static class Builder extends BaseNeuralNetwork.Builder {
public Builder() {
this.clazz = CRBM.class;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy