All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.util.MathUtils Maven / Gradle / Ivy

package org.deeplearning4j.util;


import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.Set;

import org.apache.commons.math3.linear.CholeskyDecomposition;
import org.apache.commons.math3.linear.NonSquareMatrixException;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression;
import org.deeplearning4j.berkeley.Counter;



/**
 * This is a math utils class.
 *
 * @author Adam Gibson
 *
 */
public class MathUtils  {

    /** The natural logarithm of 2. */
    public static double log2 = Math.log(2);

    /**
     * Normalize a value
     * (val - min) / (max - min)
     * @param val value to normalize
     * @param max max value
     * @param min min value
     * @return the normalized value
     */
    public static double normalize(double val,double min,double max) {
        if(max < min)
            throw new IllegalArgumentException("Max must be greather than min");

        return (val - min) / (max - min);
    }

    /**
     * Clamps the value to a discrete value
     * @param value the value to clamp
     * @param min min for the probability distribution
     * @param max max for the probability distribution
     * @return the discrete value
     */
    public static int clamp(int value, int min, int max) {
        if (value < min) value = min;
        if (value > max) value = max;
        return value;
    }

    /**
     * Discretize the given value
     * @param value the value to discretize
     * @param min the min of the distribution
     * @param max the max of the distribution
     * @param binCount the number of bins
     * @return the discretized value
     */
    public static int discretize(double value, double min, double max, int binCount) {
        int discreteValue = (int) (binCount * normalize(value, min, max));
        return clamp(discreteValue, 0, binCount - 1);
    }


    /**
     * See: http://stackoverflow.com/questions/466204/rounding-off-to-nearest-power-of-2
     * @param v the number to getFromOrigin the next power of 2 for
     * @return the next power of 2 for the passed in value
     */
    public static long nextPowOf2(long v)
    {
        v--;
        v |= v >> 1;
        v |= v >> 2;
        v |= v >> 4;
        v |= v >> 8;
        v |= v >> 16;
        v++;
        return v;

    }




    /**
     * Generates a binomial distributed number using
     * the given rng
     * @param rng
     * @param n
     * @param p
     * @return
     */
    public static int binomial(RandomGenerator rng,int n, double p) {
        if ((p < 0) || (p > 1)) {
            return 0;
        }
        int c = 0;
        for (int i = 0; i < n; i++) {
            if (rng.nextDouble() < p) {
                c++;
            }
        }
        return c;
    }

    /**
     * Generate a uniform random number from the given rng
     * @param rng the rng to use
     * @param min the min num
     * @param max the max num
     * @return a number uniformly distributed between min and max
     */
    public static double uniform(Random rng,double min, double max) {
        return rng.nextDouble() * (max - min) + min;
    }

    /**
     * Returns the correlation coefficient of two double vectors.
     *
     * @param residuals residuals
     * @param targetAttribute target attribute vector
     *
     * @return the correlation coefficient or r
     */
    public static  double correlation(double[] residuals,double targetAttribute[]) {
        double[] predictedValues = new double[residuals.length];
        for(int i=0;i counter = new Counter();
        Counter counter2 = new Counter();

        for(int i = 0; i < strings[0].length(); i++)
            counter.incrementCount(String.valueOf(strings[0].charAt(i)), 1.0);

        for(int i = 0; i < strings[1].length(); i++)
            counter2.incrementCount(String.valueOf(strings[1].charAt(i)), 1.0);
        Set v1 = counter.keySet();
        Set v2 = counter2.keySet();


        Set both = SetUtils.intersection(v1, v2);

        double sclar = 0, norm1 = 0, norm2 = 0;
        for (String k : both)
            sclar += counter.getCount(k) * counter2.getCount(k);
        for (String k : v1)
            norm1 += counter.getCount(k) * counter.getCount(k);
        for (String k : v2)
            norm2 += counter2.getCount(k) * counter2.getCount(k);
        return sclar / Math.sqrt(norm1 * norm2);
    }

    /**
     * Returns the vector length (sqrt(sum(x_i))
     * @param vector the vector to return the vector length for
     * @return the vector length of the passed in array
     */
    public static double vectorLength(double[] vector) {
        double ret=0;
        if(vector==null)
            return ret;
        else {
            for(int i=0;i 0 ? Math.log10(totalDocs/numTimesWordAppearedInADocument) : 0;
    }

    /**
     * Term frequency: 1+ log10(count)
     * @param count the count of a word or character in a given string or document
     * @return 1+ log(10) count
     */
    public static double tf(int count) {
        return count > 0 ? 1 + Math.log10(count) : 0;
    }
    /**
     * Return td * idf
     * @param td the term frequency (assumed calculated)
     * @param idf inverse document frequency (assumed calculated)
     * @return td * idf
     */
    public static double tfidf(double td,double idf) {
        return td * idf;
    }

    private static int charForLetter(char c) {
        char[] chars={'a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'};
        for(int i=0;i mergeCoords(List x,List y) {
        if(x.size()!=y.size())
            throw new IllegalArgumentException("Sample sizes must be the same for each data applyTransformToDestination.");

        List ret = new ArrayList();

        for(int i=0;i vector) {
		/* split coordinate system */
        List coords=coordSplit(vector);
		/* x vals */
        double[] x=coords.get(0);
		/* y vals */
        double[] y=coords.get(1);


        double meanX=sum(x)/x.length;
        double meanY=sum(y)/y.length;

        double sumOfMeanDifferences=sumOfMeanDifferences(x,y);
        double xDifferenceOfMean=sumOfMeanDifferencesOnePoint(x);

        double w_1=sumOfMeanDifferences/xDifferenceOfMean;

        double w_0=meanY  - (w_1) * meanX;

        //double w_1=(n*sumOfProducts(x,y) - sum(x) * sum(y))/(n*sumOfSquares(x) - Math.pow(sum(x),2));

        //	double w_0=(sum(y) - (w_1 * sum(x)))/n;

        double[] ret = new double[vector.size()];
        ret[0]=w_0;
        ret[1]=w_1;

        return ret;
    }//end weightsFor

    /**
     * This will return the squared loss of the given
     * points
     * @param x the x coordinates to use
     * @param y the y coordinates to use
     * @param w_0 the first weight
     *
     * @param w_1 the second weight
     * @return the squared loss of the given points
     */
    public static double squaredLoss(double[] x,double[] y,double w_0,double w_1) {
        double sum=0;
        for(int j=0;j coords=coordSplit(vector);
		/* x vals */
        double[] x=coords.get(0);
		/* y vals */
        double[] y=coords.get(1);


        double meanX=sum(x)/x.length;
        double meanY=sum(y)/y.length;

        double sumOfMeanDifferences=sumOfMeanDifferences(x,y);
        double xDifferenceOfMean=sumOfMeanDifferencesOnePoint(x);

        double w_1=sumOfMeanDifferences/xDifferenceOfMean;

        double w_0=meanY  - (w_1) * meanX;




        double[] ret = new double[vector.length];
        ret[0]=w_0;
        ret[1]=w_1;

        return ret;
    }//end weightsFor

    public static double errorFor(double actual,double prediction) {
        return actual-prediction;
    }
    /**
     * Used for calculating top part of simple regression for
     * beta 1
     * @param vector the x coordinates
     * @param vector2 the y coordinates
     * @return the sum of mean differences for the input vectors
     */
    public static double sumOfMeanDifferences(double[] vector,double[] vector2) {
        double mean=sum(vector)/vector.length;
        double mean2=sum(vector2)/vector2.length;
        double ret=0;
        for(int i=0;i coordSplit(double[] vector) {

        if(vector==null) return null;
        List ret = new ArrayList();
		/* x coordinates */
        double[] xVals = new double[vector.length/2];
		/* y coordinates */
        double[] yVals = new double[vector.length/2];
		/* current points */
        int xTracker=0;
        int yTracker=0;
        for(int i=0;i> partitionVariable(List arr,int chunk) {
        int count=0;
        List> ret = new ArrayList>();


        while(count < arr.size()) {

            List sublist=arr.subList(count,count+chunk);
            count+=chunk;
            ret.add(sublist);

        }
        //All data sets must be same size
        for(List lists : ret) {
            if(lists.size() < chunk)
                ret.remove(lists);
        }
        return ret;
    }//end partitionVariable


    /**
     * This returns the coordinate split in a list of coordinates
     * such that the values for ret[0] are the x values
     * and ret[1] are the y values
     * @param vector the vector to split with x and y values
     * Note that the list will be more stable due to the size operator.
     * The array version will have extraneous values if not monitored
     * properly.
     * @return a coordinate split for the given vector of values.
     * if null, is passed in null is returned
     */
    public static List coordSplit(List vector) {

        if(vector==null) return null;
        List ret = new ArrayList();
		/* x coordinates */
        double[] xVals = new double[vector.size()/2];
		/* y coordinates */
        double[] yVals = new double[vector.size()/2];
		/* current points */
        int xTracker=0;
        int yTracker=0;
        for(int i=0;i ret )
                ret = d;
        return ret;
    }

    /**
     * Normalizes the doubles in the array using the given value.
     *
     * @param doubles the array of double
     * @param sum the value by which the doubles are to be normalized
     * @exception IllegalArgumentException if sum is zero or NaN
     */
    public static void normalize(double[] doubles, double sum) {

        if (Double.isNaN(sum)) {
            throw new IllegalArgumentException("Can't normalize array. Sum is NaN.");
        }
        if (sum == 0) {
            // Maybe this should just be a return.
            throw new IllegalArgumentException("Can't normalize array. Sum is zero.");
        }
        for (int i = 0; i < doubles.length; i++) {
            doubles[i] /= sum;
        }
    }//end normalize

    /**
     * Converts an array containing the natural logarithms of
     * probabilities stored in a vector back into probabilities.
     * The probabilities are assumed to sum to one.
     *
     * @param a an array holding the natural logarithms of the probabilities
     * @return the converted array
     */
    public static double[] logs2probs(double[] a) {

        double max = a[maxIndex(a)];
        double sum = 0.0;

        double[] result = new double[a.length];
        for(int i = 0; i < a.length; i++) {
            result[i] = Math.exp(a[i] - max);
            sum += result[i];
        }

        normalize(result, sum);

        return result;
    }//end logs2probs
    /**
     * This returns the entropy for a given vector of probabilities.
     * @param probabilities the probabilities to getFromOrigin the entropy for
     * @return the entropy of the given probabilities.
     */
    public static double information(double[] probabilities) {
        double total = 0.0;
        for (double d : probabilities) {
            total += (-1.0 * log2(d) * d);
        }
        return total;
    }//end information

    /**
     *
     *
     * Returns index of maximum element in a given
     * array of doubles. First maximum is returned.
     *
     * @param doubles the array of doubles
     * @return the index of the maximum element
     */
    public static /*@pure@*/ int maxIndex(double[] doubles) {

        double maximum = 0;
        int maxIndex = 0;

        for (int i = 0; i < doubles.length; i++) {
            if ((i == 0) || (doubles[i] > maximum)) {
                maxIndex = i;
                maximum = doubles[i];
            }
        }

        return maxIndex;
    }//end maxIndex

    /**
     * This will return the factorial of the given number n.
     * @param n the number to getFromOrigin the factorial for
     * @return the factorial for this number
     */
    public static double factorial(double n) {
        if(n==1 || n==0) return 1;
        for(double i=n;i>0;i--,n*=(i > 0 ? i : 1)) {}
        return n;
    }//end factorial




    /** The small deviation allowed in double comparisons. */
    public static double SMALL = 1e-6;
    /**
     * Returns the log-odds for a given probability.
     *
     * @param prob the probability
     *
     * @return the log-odds after the probability has been mapped to
     * [Utils.SMALL, 1-Utils.SMALL]
     */
    public static /*@pure@*/ double probToLogOdds(double prob) {

        if (gr(prob, 1) || (sm(prob, 0))) {
            throw new IllegalArgumentException("probToLogOdds: probability must " +
                    "be in [0,1] "+prob);
        }
        double p = SMALL + (1.0 - 2 * SMALL) * prob;
        return Math.log(p / (1 - p));
    }

    /**
     * Rounds a double to the next nearest integer value. The JDK version
     * of it doesn't work properly.
     *
     * @param value the double value
     * @return the resulting integer value
     */
    public static /*@pure@*/ int round(double value) {

        int roundedValue = value > 0
                ? (int)(value + 0.5)
                : -(int)(Math.abs(value) + 0.5);

        return roundedValue;
    }//end round
    /**
     * This returns the permutation of n choose r.
     * @param n the n to choose
     * @param r the number of elements to choose
     * @return the permutation of these numbers
     */
    public static double permutation(double n,double r) {
        double nFac=MathUtils.factorial(n);
        double nMinusRFac=MathUtils.factorial((n-r));
        return nFac/nMinusRFac;
    }//end permutation


    /**
     * This returns the combination of n choose r
     * @param n the number of elements overall
     * @param r the number of elements to choose
     * @return the amount of possible combinations for this applyTransformToDestination of elements
     */
    public static double combination(double n,double r) {
        double nFac=MathUtils.factorial(n);
        double rFac=MathUtils.factorial(r);
        double nMinusRFac=MathUtils.factorial((n-r));

        return nFac/(rFac * nMinusRFac);
    }//end combination


    /**
     * sqrt(a^2 + b^2) without under/overflow.
     */
    public static double hypotenuse(double a, double b) {
        double r;
        if (Math.abs(a) > Math.abs(b)) {
            r = b/a;
            r = Math.abs(a)*Math.sqrt(1+r*r);
        } else if (b != 0) {
            r = a/b;
            r = Math.abs(b)*Math.sqrt(1+r*r);
        } else {
            r = 0.0;
        }
        return r;
    }//end hypotenuse

    /**
     * Rounds a double to the next nearest integer value in a probabilistic
     * fashion (e.g. 0.8 has a 20% chance of being rounded down to 0 and a
     * 80% chance of being rounded up to 1). In the limit, the average of
     * the rounded numbers generated by this procedure should converge to
     * the original double.
     *
     * @param value the double value
     * @param rand the random number generator
     * @return the resulting integer value
     */
    public static int probRound(double value, Random rand) {

        if (value >= 0) {
            double lower = Math.floor(value);
            double prob = value - lower;
            if (rand.nextDouble() < prob) {
                return (int)lower + 1;
            } else {
                return (int)lower;
            }
        } else {
            double lower = Math.floor(Math.abs(value));
            double prob = Math.abs(value) - lower;
            if (rand.nextDouble() < prob) {
                return -((int)lower + 1);
            } else {
                return -(int)lower;
            }
        }
    }//end probRound

    /**
     * Rounds a double to the given number of decimal places.
     *
     * @param value the double value
     * @param afterDecimalPoint the number of digits after the decimal point
     * @return the double rounded to the given precision
     */
    public static /*@pure@*/ double roundDouble(double value,int afterDecimalPoint) {

        double mask = Math.pow(10.0, (double)afterDecimalPoint);

        return (double)(Math.round(value * mask)) / mask;
    }//end roundDouble



    /**
     * Rounds a double to the given number of decimal places.
     *
     * @param value the double value
     * @param afterDecimalPoint the number of digits after the decimal point
     * @return the double rounded to the given precision
     */
    public static /*@pure@*/ float roundFloat(float value,int afterDecimalPoint) {

        float mask = (float) Math.pow(10, (float) afterDecimalPoint);

        return (float)(Math.round(value * mask)) / mask;
    }//end roundDouble
    /**
     * This will return the bernoulli trial for the given event.
     * A bernoulli trial is a mechanism for detecting the probability
     * of a given event occurring k times in n independent trials
     * @param n the number of trials
     * @param k the number of times the target event occurs
     * @param successProb the probability of the event happening
     * @return the probability of the given event occurring k times.
     */
    public static double bernoullis(double n,double k,double successProb) {

        double combo = MathUtils.combination(n, k);
        double p = successProb;
        double q= 1 - successProb;
        return combo * Math.pow(p,k) * Math.pow(q,n-k);
    }//end bernoullis
    /**
     * Tests if a is smaller than b.
     *
     * @param a a double
     * @param b a double
     */
    public static /*@pure@*/ boolean sm(double a,double b) {

        return (b-a > SMALL);
    }

    /**
     * Tests if a is greater than b.
     *
     * @param a a double
     * @param b a double
     */
    public static /*@pure@*/ boolean gr(double a,double b) {

        return (a-b > SMALL);
    }

    /**
     * This will take a given string and separator and convert it to an equivalent
     * double array.
     * @param data the data to separate
     * @param separator the separator to use
     * @return the new double array based on the given data
     */
    public static double[] fromString(String data,String separator) {
        String[] split=data.split(separator);
        double[] ret = new double[split.length];
        for(int i=0;i 0){
            rem = num % 10;
            num = num / 10;
            if(rem != 0 && rem != 1){
                System.out.println("This is not a binary number.");
                System.out.println("Please try once again.");
                return -1;
            }
        }
        int i= Integer.parseInt(binary,2);
        return i;
    }//end toDecimal


    /**
     * This will translate a vector in to an equivalent integer
     * @param vector the vector to translate
     * @return a z value such that the value is the interleaved lsd to msd for each
     * double in the vector
     */
    public  static int distanceFinderZValue(double[] vector) {
        StringBuffer binaryBuffer =new StringBuffer();
        List binaryReps = new ArrayList(vector.length);
        for(int i=0;i end)
            throw new IllegalArgumentException("Begin must not be less than end");
        return	(int)begin + (int)(Math.random() * ((end - begin) + 1));
    }

    /**
     * Generates a random integer between the specified numbers
     * @param begin the begin of the interval
     * @param end the end of the interval
     * @return an int between begin and end
     */
    public static int randomNumberBetween(double begin,double end,RandomGenerator rng) {
        if(begin > end)
            throw new IllegalArgumentException("Begin must not be less than end");
        return	(int)begin + (int)(rng.nextDouble() * ((end - begin) + 1));
    }
    public static float randomFloatBetween(float begin,float end) {
        float rand = (float) Math.random();
        return	begin + (rand * ((end - begin)));
    }

    public static double randomDoubleBetween(double begin,double end) {
        return	begin + (Math.random() * ((end - begin)));
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy