org.deeplearning4j.berkeley.SloppyMath Maven / Gradle / Ivy
/*
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.berkeley;
import java.util.List;
import java.util.Map;
/**
* The class SloppyMath
contains methods for performing basic
* numeric operations. In some cases, such as max and min, they cut a few
* corners in the implementation for the sake of efficiency. In particular, they
* may not handle special notions like NaN and -0.0 correctly. This was the
* origin of the class name, but some other operations are just useful math
* additions, such as logSum.
*
* @author Christopher Manning
* @version 2003/01/02
*/
public final class SloppyMath {
private SloppyMath() {
}
public static double abs(double x) {
if (x > 0)
return x;
return -1.0 * x;
}
public static double lambert(double v, double u){
double x = -(Math.log(-v)+u);//-Math.log(-z);
double w = -x;
double diff=1;
while (Math.abs(diff)<1.0e-5){
double z = -x -Math.log(Math.abs(w));
diff = z-w;
w = z;
}
return w;
/*
//Use asymptotic expansion w = log(z) - log(log(z)) for most z
double summand = (z==0) ? 1 : 0;
double tmp = Math.log(z+summand);// + i*b*6.28318530717958648;
double w = tmp - Math.log(tmp + summand);
//For b = 0, use a series expansion when close to the branch point
//k = find(b == 0 & abs(z + 0.3678794411714423216) <= 1.5);
tmp = Math.sqrt(5.43656365691809047*z + 2) - 1;// + i*b*6.28318530717958648;
//w(k) = tmp(k);
w = tmp;
for (int k=1; k<36; k++){
// Converge with Halley's iterations, about 5 iterations satisfies
//the tolerance for most z
double c1 = Math.exp(w);
double c2 = w*c1 - z;
summand = (w != -1) ? 1 : 0;
double w1 = w + summand;
double dw = c2/(c1*w1 - ((w + 2)*c2/(2*w1)));
w = w - dw;
if (Math.abs(dw) < 0.7e-16*(2+Math.abs(w)))
break;
}
return w;*/
}
/**
* Returns the minimum of three int values.
*/
public static int max(int a, int b, int c) {
int ma;
ma = a;
if (b > ma) {
ma = b;
}
if (c > ma) {
ma = c;
}
return ma;
}
/**
* Returns the minimum of three int values.
*/
public static int min(int a, int b, int c) {
int mi;
mi = a;
if (b < mi) {
mi = b;
}
if (c < mi) {
mi = c;
}
return mi;
}
/**
* Returns the greater of two float
values. That is, the
* result is the argument closer to positive infinity. If the arguments have
* the same value, the result is that same value. Does none of the special
* checks for NaN or -0.0f that Math.max
does.
*
* @param a
* an argument.
* @param b
* another argument.
* @return the larger of a
and b
.
*/
public static float max(float a, float b) {
return (a >= b) ? a : b;
}
/**
* Returns the greater of two double
values. That is, the
* result is the argument closer to positive infinity. If the arguments have
* the same value, the result is that same value. Does none of the special
* checks for NaN or -0.0f that Math.max
does.
*
* @param a
* an argument.
* @param b
* another argument.
* @return the larger of a
and b
.
*/
public static double max(double a, double b) {
return (a >= b) ? a : b;
}
/**
* Returns the smaller of two float
values. That is, the
* result is the value closer to negative infinity. If the arguments have
* the same value, the result is that same value. Does none of the special
* checks for NaN or -0.0f that Math.max
does.
*
* @param a
* an argument.
* @param b
* another argument.
* @return the smaller of a
and b.
*/
public static float min(float a, float b) {
return (a <= b) ? a : b;
}
/**
* Returns the smaller of two double
values. That is, the
* result is the value closer to negative infinity. If the arguments have
* the same value, the result is that same value. Does none of the special
* checks for NaN or -0.0f that Math.max
does.
*
* @param a
* an argument.
* @param b
* another argument.
* @return the smaller of a
and b
.
*/
public static double min(double a, double b) {
return (a <= b) ? a : b;
}
/**
* Returns true if the argument is a "dangerous" double to have around,
* namely one that is infinite, NaN or zero.
*/
public static boolean isDangerous(double d) {
return Double.isInfinite(d) || Double.isNaN(d) || d == 0.0;
}
public static boolean isDangerous(float d) {
return Float.isInfinite(d) || Float.isNaN(d) || d == 0.0;
}
public static boolean isGreater(double x, double y) {
if (x>1) return (((x-y) / x) > -0.01);
return ((x-y) > -0.0001);
}
/**
* Returns true if the argument is a "very dangerous" double to have around,
* namely one that is infinite or NaN.
*/
public static boolean isVeryDangerous(double d) {
return Double.isInfinite(d) || Double.isNaN(d);
}
public static double relativeDifferance(double a, double b) {
a = Math.abs(a);
b = Math.abs(b);
double absMin = Math.min(a,b);
return Math.abs(a-b) / absMin;
}
public static boolean isDiscreteProb(double d, double tol)
{
return d >=0.0 && d <= 1.0 + tol;
}
/**
* If a difference is bigger than this in log terms, then the sum or
* difference of them will just be the larger (to 12 or so decimal places
* for double, and 7 or 8 for float).
*/
public static final double LOGTOLERANCE = 30.0;
static final float LOGTOLERANCE_F = 10.0f;
/**
* Returns the log of the sum of two numbers, which are themselves input in
* log form. This uses natural logarithms. Reasonable care is taken to do
* this as efficiently as possible (under the assumption that the numbers
* might differ greatly in magnitude), with high accuracy, and without
* numerical overflow. Also, handle correctly the case of arguments being
* -Inf (e.g., probability 0).
*
* @param lx
* First number, in log form
* @param ly
* Second number, in log form
* @return log(exp(lx) + exp(ly))
*/
public static float logAdd(float lx, float ly) {
float max, negDiff;
if (lx > ly) {
max = lx;
negDiff = ly - lx;
} else {
max = ly;
negDiff = lx - ly;
}
if (max == Double.NEGATIVE_INFINITY || negDiff < -LOGTOLERANCE_F) {
return max;
} else {
return max + (float)Math.log(1.0f + Math.exp(negDiff));
}
}
/**
* Returns the log of the sum of two numbers, which are themselves input in
* log form. This uses natural logarithms. Reasonable care is taken to do
* this as efficiently as possible (under the assumption that the numbers
* might differ greatly in magnitude), with high accuracy, and without
* numerical overflow. Also, handle correctly the case of arguments being
* -Inf (e.g., probability 0).
*
* @param lx
* First number, in log form
* @param ly
* Second number, in log form
* @return log(exp(lx) + exp(ly))
*/
public static double logAdd(double lx, double ly) {
double max, negDiff;
if (lx > ly) {
max = lx;
negDiff = ly - lx;
} else {
max = ly;
negDiff = lx - ly;
}
if (max == Double.NEGATIVE_INFINITY || negDiff < -LOGTOLERANCE) {
return max;
} else {
return max + Math.log(1.0 + Math.exp(negDiff));
}
}
public static double logAdd(float[] logV) {
double maxIndex = 0;
double max = Double.NEGATIVE_INFINITY;
for (int i = 0; i < logV.length; i++) {
if (logV[i] > max) {
max = logV[i];
maxIndex = i;
}
}
if (max == Double.NEGATIVE_INFINITY) return Double.NEGATIVE_INFINITY;
// compute the negative difference
double threshold = max - LOGTOLERANCE;
double sumNegativeDifferences = 0.0;
for (int i = 0; i < logV.length; i++) {
if (i != maxIndex && logV[i] > threshold) {
sumNegativeDifferences += Math.exp(logV[i] - max);
}
}
if (sumNegativeDifferences > 0.0) {
return max + Math.log(1.0 + sumNegativeDifferences);
} else {
return max;
}
}
public static void logNormalize(double[] logV) {
double logSum = logAdd(logV);
if (Double.isNaN(logSum)) {
throw new RuntimeException("Bad log-sum");
}
if (logSum == 0.0) return;
for (int i = 0; i < logV.length; i++) {
logV[i] -= logSum;
}
}
public static double logAdd(double[] logV) {
double maxIndex = 0;
double max = Double.NEGATIVE_INFINITY;
for (int i = 0; i < logV.length; i++) {
if (logV[i] > max) {
max = logV[i];
maxIndex = i;
}
}
if (max == Double.NEGATIVE_INFINITY) return Double.NEGATIVE_INFINITY;
// compute the negative difference
double threshold = max - LOGTOLERANCE;
double sumNegativeDifferences = 0.0;
for (int i = 0; i < logV.length; i++) {
if (i != maxIndex && logV[i] > threshold) {
sumNegativeDifferences += Math.exp(logV[i] - max);
}
}
if (sumNegativeDifferences > 0.0) {
return max + Math.log(1.0 + sumNegativeDifferences);
} else {
return max;
}
}
public static double logAdd(List logV) {
double max = Double.NEGATIVE_INFINITY;
double maxIndex = 0;
for (int i = 0; i < logV.size(); i++) {
if (logV.get(i) > max) {
max = logV.get(i);
maxIndex = i;
}
}
if (max == Double.NEGATIVE_INFINITY) return Double.NEGATIVE_INFINITY;
// compute the negative difference
double threshold = max - LOGTOLERANCE;
double sumNegativeDifferences = 0.0;
for (int i = 0; i < logV.size(); i++) {
if (i != maxIndex && logV.get(i) > threshold) {
sumNegativeDifferences += Math.exp(logV.get(i) - max);
}
}
if (sumNegativeDifferences > 0.0) {
return max + Math.log(1.0 + sumNegativeDifferences);
} else {
return max;
}
}
public static float logAdd_Old(float[] logV) {
float max = Float.NEGATIVE_INFINITY;
float maxIndex = 0;
for (int i = 0; i < logV.length; i++) {
if (logV[i] > max) {
max = logV[i];
maxIndex = i;
}
}
if (max == Float.NEGATIVE_INFINITY) return Float.NEGATIVE_INFINITY;
// compute the negative difference
float threshold = max - LOGTOLERANCE_F;
float sumNegativeDifferences = 0.0f;
for (int i = 0; i < logV.length; i++) {
if (i != maxIndex && logV[i] > threshold) {
sumNegativeDifferences += Math.exp(logV[i] - max);
}
}
if (sumNegativeDifferences > 0.0) {
return max + (float) Math.log(1.0f + sumNegativeDifferences);
} else {
return max;
}
}
/*
* adds up the entries logV[0], logV[1], ... , logV[lastIndex-1]
*/
public static float logAdd(float[] logV, int lastIndex) {
if (lastIndex==0) return Float.NEGATIVE_INFINITY;
float max = Float.NEGATIVE_INFINITY;
float maxIndex = 0;
for (int i = 0; i < lastIndex; i++) {
if (logV[i] > max) {
max = logV[i];
maxIndex = i;
}
}
if (max == Float.NEGATIVE_INFINITY) return Float.NEGATIVE_INFINITY;
// compute the negative difference
float threshold = max - LOGTOLERANCE_F;
double sumNegativeDifferences = 0.0;
for (int i = 0; i < lastIndex; i++) {
if (i != maxIndex && logV[i] > threshold) {
sumNegativeDifferences += Math.exp((logV[i] - max));
}
}
if (sumNegativeDifferences > 0.0) {
return max + (float) Math.log(1.0 + sumNegativeDifferences);
} else {
return max;
}
}
/*
* adds up the entries logV[0], logV[1], ... , logV[lastIndex-1]
*/
public static double logAdd(double[] logV, int lastIndex) {
if (lastIndex==0) return Double.NEGATIVE_INFINITY;
double max = Double.NEGATIVE_INFINITY;
double maxIndex = 0;
for (int i = 0; i < lastIndex; i++) {
if (logV[i] > max) {
max = logV[i];
maxIndex = i;
}
}
if (max == Double.NEGATIVE_INFINITY) return Double.NEGATIVE_INFINITY;
// compute the negative difference
double threshold = max - LOGTOLERANCE;
double sumNegativeDifferences = 0.0;
for (int i = 0; i < lastIndex; i++) {
if (i != maxIndex && logV[i] > threshold) {
sumNegativeDifferences += Math.exp((logV[i] - max));
}
}
if (sumNegativeDifferences > 0.0) {
return max + Math.log(1.0 + sumNegativeDifferences);
} else {
return max;
}
}
/**
* Similar to logAdd, but without the final log. I.e. Sum_i exp(logV_i)
*
* @param logV
* @return
*/
public static float addExp_Old(float[] logV) {
float max = Float.NEGATIVE_INFINITY;
float maxIndex = 0;
for (int i = 0; i < logV.length; i++) {
if (logV[i] > max) {
max = logV[i];
maxIndex = i;
}
}
if (max == Float.NEGATIVE_INFINITY) return Float.NEGATIVE_INFINITY;
// compute the negative difference
float threshold = max - LOGTOLERANCE_F;
float sumNegativeDifferences = 0.0f;
for (int i = 0; i < logV.length; i++) {
if (i != maxIndex && logV[i] > threshold) {
sumNegativeDifferences += Math.exp(logV[i] - max);
}
}
return (float) Math.exp(max) * (1.0f + sumNegativeDifferences);
}
/*
* adds up the entries logV[0], logV[1], ... , logV[lastIndex-1]
*/
public static float addExp(float[] logV, int lastIndex) {
if (lastIndex==0) return Float.NEGATIVE_INFINITY;
float max = Float.NEGATIVE_INFINITY;
float maxIndex = 0;
for (int i = 0; i < lastIndex; i++) {
if (logV[i] > max) {
max = logV[i];
maxIndex = i;
}
}
if (max == Float.NEGATIVE_INFINITY) return Float.NEGATIVE_INFINITY;
// compute the negative difference
float threshold = max - LOGTOLERANCE_F;
float sumNegativeDifferences = 0.0f;
for (int i = 0; i < lastIndex; i++) {
if (i != maxIndex && logV[i] > threshold) {
sumNegativeDifferences += Math.exp(logV[i] - max);
}
}
return (float) Math.exp(max) * (1.0f + sumNegativeDifferences);
}
/**
* Computes n choose k in an efficient way. Works with k == 0 or k == n but
* undefined if k < 0 or k > n
*
* @param n
* @param k
* @return fact(n) / fact(k) * fact(n-k)
*/
public static int nChooseK(int n, int k) {
k = Math.min(k, n - k);
if (k == 0) {
return 1;
}
int accum = n;
for (int i = 1; i < k; i++) {
accum *= (n - i);
accum /= i;
}
return accum / k;
}
/**
* exponentiation like we learned in grade school: multiply b by itself e
* times. Uses power of two trick. e must be nonnegative!!! no checking!!!
*
* @param b
* base
* @param e
* exponent
* @return b^e
*/
public static int intPow(int b, int e) {
if (e == 0) {
return 1;
}
int result = 1;
int currPow = b;
do {
if ((e & 1) == 1) result *= currPow;
currPow = currPow * currPow;
e >>= 1;
} while (e > 0);
return result;
}
/**
* exponentiation like we learned in grade school: multiply b by itself e
* times. Uses power of two trick. e must be nonnegative!!! no checking!!!
*
* @param b
* base
* @param e
* exponent
* @return b^e
*/
public static float intPow(float b, int e) {
if (e == 0) {
return 1;
}
float result = 1;
float currPow = b;
do {
if ((e & 1) == 1) result *= currPow;
currPow = currPow * currPow;
e >>= 1;
} while (e > 0);
return result;
}
/**
* exponentiation like we learned in grade school: multiply b by itself e
* times. Uses power of two trick. e must be nonnegative!!! no checking!!!
*
* @param b
* base
* @param e
* exponent
* @return b^e
*/
public static double intPow(double b, int e) {
if (e == 0) {
return 1;
}
float result = 1;
double currPow = b;
do {
if ((e & 1) == 1) result *= currPow;
currPow = currPow * currPow;
e >>= 1;
} while (e > 0);
return result;
}
/**
* Find a hypergeometric distribution. This uses exact math, trying fairly
* hard to avoid numeric overflow by interleaving multiplications and
* divisions. (To do: make it even better at avoiding overflow, by using
* loops that will do either a multiple or divide based on the size of the
* intermediate result.)
*
* @param k
* The number of black balls drawn
* @param n
* The total number of balls
* @param r
* The number of black balls
* @param m
* The number of balls drawn
* @return The hypergeometric value
*/
public static double hypergeometric(int k, int n, int r, int m) {
if (k < 0 || r > n || m > n || n <= 0 || m < 0 | r < 0) {
throw new IllegalArgumentException("Invalid hypergeometric");
}
// exploit symmetry of problem
if (m > n / 2) {
m = n - m;
k = r - k;
}
if (r > n / 2) {
r = n - r;
k = m - k;
}
if (m > r) {
int temp = m;
m = r;
r = temp;
}
// now we have that k <= m <= r <= n/2
if (k < (m + r) - n || k > m) {
return 0.0;
}
// Do limit cases explicitly
// It's unclear whether this is a good idea. I put it in fearing
// numerical errors when the numbers seemed off, but actually there
// was a bug in the Fisher's exact routine.
if (r == n) {
if (k == m) {
return 1.0;
} else {
return 0.0;
}
} else if (r == n - 1) {
if (k == m) {
return (n - m) / (double) n;
} else if (k == m - 1) {
return m / (double) n;
} else {
return 0.0;
}
} else if (m == 1) {
if (k == 0) {
return (n - r) / (double) n;
} else if (k == 1) {
return r / (double) n;
} else {
return 0.0;
}
} else if (m == 0) {
if (k == 0) {
return 1.0;
} else {
return 0.0;
}
} else if (k == 0) {
double ans = 1.0;
for (int m0 = 0; m0 < m; m0++) {
ans *= ((n - r) - m0);
ans /= (n - m0);
}
return ans;
}
double ans = 1.0;
// do (n-r)x...x((n-r)-((m-k)-1))/n x...x (n-((m-k-1)))
// leaving rest of denominator to getFromOrigin to multimply by (n-(m-1))
// that's k things which goes into next loop
for (int nr = n - r, n0 = n; nr > (n - r) - (m - k); nr--, n0--) {
// System.out.println("Multiplying by " + nr);
ans *= nr;
// System.out.println("Dividing by " + n0);
ans /= n0;
}
// System.out.println("Done phase 1");
for (int k0 = 0; k0 < k; k0++) {
ans *= (m - k0);
// System.out.println("Multiplying by " + (m-k0));
ans /= ((n - (m - k0)) + 1);
// System.out.println("Dividing by " + ((n-(m+k0)+1)));
ans *= (r - k0);
// System.out.println("Multiplying by " + (r-k0));
ans /= (k0 + 1);
// System.out.println("Dividing by " + (k0+1));
}
return ans;
}
/**
* Find a one tailed exact binomial test probability. Finds the chance of
* this or a higher result
*
* @param k
* number of successes
* @param n
* Number of trials
* @param p
* Probability of a success
*/
public static double exactBinomial(int k, int n, double p) {
double total = 0.0;
for (int m = k; m <= n; m++) {
double nChooseM = 1.0;
for (int r = 1; r <= m; r++) {
nChooseM *= (n - r) + 1;
nChooseM /= r;
}
// System.out.println(n + " choose " + m + " is " + nChooseM);
// System.out.println("prob contribution is " +
// (nChooseM * Math.pow(p, m) * Math.pow(1.0-p, n - m)));
total += nChooseM * Math.pow(p, m) * Math.pow(1.0 - p, n - m);
}
return total;
}
/**
* Find a one-tailed Fisher's exact probability. Chance of having seen this
* or a more extreme departure from what you would have expected given
* independence. I.e., k >= the value passed in. Warning: this was done just
* for collocations, where you are concerned with the case of k being larger
* than predicted. It doesn't correctly handle other cases, such as k being
* smaller than expected.
*
* @param k
* The number of black balls drawn
* @param n
* The total number of balls
* @param r
* The number of black balls
* @param m
* The number of balls drawn
* @return The Fisher's exact p-value
*/
public static double oneTailedFishersExact(int k, int n, int r, int m) {
if (k < 0 || k < (m + r) - n || k > r || k > m || r > n || m > n) {
throw new IllegalArgumentException("Invalid Fisher's exact: " + "k=" + k + " n=" + n + " r=" + r + " m=" + m + " k<0=" + (k < 0) + " k<(m+r)-n=" + (k < (m + r) - n) + " k>r=" + (k > r) + " k>m=" + (k > m) + " r>n=" + (r > n) + "m>n=" + (m > n));
}
// exploit symmetry of problem
if (m > n / 2) {
m = n - m;
k = r - k;
}
if (r > n / 2) {
r = n - r;
k = m - k;
}
if (m > r) {
int temp = m;
m = r;
r = temp;
}
// now we have that k <= m <= r <= n/2
double total = 0.0;
if (k > m / 2) {
// sum from k to m
for (int k0 = k; k0 <= m; k0++) {
// System.out.println("Calling hypg(" + k0 + "; " + n +
// ", " + r + ", " + m + ")");
total += SloppyMath.hypergeometric(k0, n, r, m);
}
} else {
// sum from max(0, (m+r)-n) to k-1, and then subtract from 1
int min = Math.max(0, (m + r) - n);
for (int k0 = min; k0 < k; k0++) {
// System.out.println("Calling hypg(" + k0 + "; " + n +
// ", " + r + ", " + m + ")");
total += SloppyMath.hypergeometric(k0, n, r, m);
}
total = 1.0 - total;
}
return total;
}
/**
* Find a 2x2 chi-square value. Note: could do this more neatly using
* simplified formula for 2x2 case.
*
* @param k
* The number of black balls drawn
* @param n
* The total number of balls
* @param r
* The number of black balls
* @param m
* The number of balls drawn
* @return The Fisher's exact p-value
*/
public static double chiSquare2by2(int k, int n, int r, int m) {
int[][] cg = {{k, r - k}, {m - k, n - (k + (r - k) + (m - k))}};
int[] cgr = {r, n - r};
int[] cgc = {m, n - m};
double total = 0.0;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
double exp = (double) cgr[i] * cgc[j] / n;
total += (cg[i][j] - exp) * (cg[i][j] - exp) / exp;
}
}
return total;
}
public static double exp(double logX) {
// if x is very near one, use the linear approximation
if (Math.abs(logX) < 0.001)
return 1 + logX;
return Math.exp(logX);
}
/**
* Tests the hypergeometric distribution code, or other cooccurrences provided
* in this module.
*
* @param args
* Either none, and the log add rountines are tested, or the
* following 4 arguments: k (cell), n (total), r (row), m (col)
*/
public static void main(String[] args) {
System.out.println(approxLog(0.0));
// if (args.length == 0) {
// System.err.println("Usage: java edu.stanford.nlp.math.SloppyMath " + "[-logAdd|-fishers k n r m|-bionomial r n p");
// } else if (args[0].equals("-logAdd")) {
// System.out.println("Log adds of neg infinity numbers, etc.");
// System.out.println("(logs) -Inf + -Inf = " + logAdd(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY));
// System.out.println("(logs) -Inf + -7 = " + logAdd(Double.NEGATIVE_INFINITY, -7.0));
// System.out.println("(logs) -7 + -Inf = " + logAdd(-7.0, Double.NEGATIVE_INFINITY));
// System.out.println("(logs) -50 + -7 = " + logAdd(-50.0, -7.0));
// System.out.println("(logs) -11 + -7 = " + logAdd(-11.0, -7.0));
// System.out.println("(logs) -7 + -11 = " + logAdd(-7.0, -11.0));
// System.out.println("real 1/2 + 1/2 = " + logAdd(Math.log(0.5), Math.log(0.5)));
// } else if (args[0].equals("-fishers")) {
// int k = Integer.parseInt(args[1]);
// int n = Integer.parseInt(args[2]);
// int r = Integer.parseInt(args[3]);
// int m = Integer.parseInt(args[4]);
// double ans = SloppyMath.hypergeometric(k, n, r, m);
// System.out.println("hypg(" + k + "; " + n + ", " + r + ", " + m + ") = " + ans);
// ans = SloppyMath.oneTailedFishersExact(k, n, r, m);
// System.out.println("1-tailed Fisher's exact(" + k + "; " + n + ", " + r + ", " + m + ") = " + ans);
// double ansChi = SloppyMath.chiSquare2by2(k, n, r, m);
// System.out.println("chiSquare(" + k + "; " + n + ", " + r + ", " + m + ") = " + ansChi);
//
// System.out.println("Swapping arguments should give same hypg:");
// ans = SloppyMath.hypergeometric(k, n, r, m);
// System.out.println("hypg(" + k + "; " + n + ", " + m + ", " + r + ") = " + ans);
// int othrow = n - m;
// int othcol = n - r;
// int cell12 = m - k;
// int cell21 = r - k;
// int cell22 = othrow - (r - k);
// ans = SloppyMath.hypergeometric(cell12, n, othcol, m);
// System.out.println("hypg(" + cell12 + "; " + n + ", " + othcol + ", " + m + ") = " + ans);
// ans = SloppyMath.hypergeometric(cell21, n, r, othrow);
// System.out.println("hypg(" + cell21 + "; " + n + ", " + r + ", " + othrow + ") = " + ans);
// ans = SloppyMath.hypergeometric(cell22, n, othcol, othrow);
// System.out.println("hypg(" + cell22 + "; " + n + ", " + othcol + ", " + othrow + ") = " + ans);
// } else if (args[0].equals("-binomial")) {
// int k = Integer.parseInt(args[1]);
// int n = Integer.parseInt(args[2]);
// double p = Double.parseDouble(args[3]);
// double ans = SloppyMath.exactBinomial(k, n, p);
// System.out.println("Binomial p(X >= " + k + "; " + n + ", " + p + ") = " + ans);
// }
// else if (args[0].equals("-approxExp"))
// {
// int numTrials = 0;
// double sumError = 0;
// double maxError = 0;
// for (double x = -700; x < 700; x += 0.1)
// {
// final double approxExp = approxExp(x);
// final double exp = Math.exp(x);
// double error = Math.abs((exp - approxExp) / exp);
// if (isVeryDangerous(error)) continue;
// maxError = Math.max(error,maxError);
// sumError += error;
// numTrials++;
// }
// double avgError = sumError / numTrials;
// System.out.println("Avg error was: " + avgError);
// System.out.println("Max error was: " + maxError);
// }
// else if (args[0].equals("-approxLog"))
// {
// int numTrials = 0;
// double sumError = 0;
// double maxError = 0;
// double x = Double.MIN_VALUE;
// while (x < Double.MAX_VALUE)
// {
// // if (Math.abs(x - 1) < 0.3) continue;
// final double approxExp = approxLog(x);
// final double exp = Math.log(x);
// double error = Math.abs((exp - approxExp) / exp);
// if (isVeryDangerous(error)) continue;
// maxError = Math.max(error,maxError);
// sumError += error;
// numTrials++;
//
// if (x < Double.MIN_VALUE * 1000000)
// x *= 4;
// else x *= 1.0001;
// }
// double avgError = sumError / numTrials;
// System.out.println("Avg error was: " + avgError);
// System.out.println("Max error was: " + maxError);
//
//
// } else {
// System.err.println("Unknown option: " + args[0]);
// }
}
public static double noNaNDivide(double num, double denom)
{
return denom == 0.0 ? 0.0 : num / denom;
}
public static double approxLog(double val)
{
if (val < 0.0) return Double.NaN;
if (val == 0.0) return Double.NEGATIVE_INFINITY;
double r = val - 1;
if (Math.abs(r) < 0.3)
{
// use first few terms of taylor series
final double rSquared = r * r;
return r - rSquared / 2 + rSquared * r / 3;
}
final double x = (Double.doubleToLongBits(val) >> 32);
return (x - 1072632447) / 1512775;
}
public static double approxExp(double val)
{
if (Math.abs(val) < 0.1) return 1 + val;
final long tmp = (long) (1512775 * val + (1072693248 - 60801));
return Double.longBitsToDouble(tmp << 32);
}
public static double approxPow(final double a, final double b)
{
final int tmp = (int) (Double.doubleToLongBits(a) >> 32);
final int tmp2 = (int) (b * (tmp - 1072632447) + 1072632447);
return Double.longBitsToDouble(((long) tmp2) << 32);
}
public static double logSubtract(double a, double b)
{
if (a > b)
{
// logA logB
// (logA - logB) = (log
return a + Math.log(1.0 - Math.exp(b - a));
}
else
{
return b + Math.log(-1.0 + Math.exp(a - b));
}
}
public static double unsafeSubtract(double a, double b) {
if (a == b) { // inf - inf (or -inf - -inf)
return 0.0;
}
if (a == Double.NEGATIVE_INFINITY) {
return a;
}
return a-b;
}
public static double unsafeAdd(double a, double b) {
if (a == b) { // inf - inf (or -inf - -inf)
return 0.0;
}
if (a == Double.POSITIVE_INFINITY) {
return a;
}
return a+b;
}
public static double logAdd(Counter counts) {
double[] arr = new double[counts.size()];
int index = 0;
for (Map.Entry entry : counts.entrySet()) {
arr[index++] = entry.getValue();
}
return SloppyMath.logAdd(arr);
}
// public static double approxLogAdd(double a, double b)
// {
//
// final long tmp1 = (long) (1512775 * a + (1072693248 - 60801));
// double ea = Double.longBitsToDouble(tmp1 << 32);
// final long tmp2 = (long) (1512775 * b + (1072693248 - 60801));
// double eb = Double.longBitsToDouble(tmp2 << 32);
//
// final double x = (Double.doubleToLongBits(ea + eb) >> 32);
// return (x - 1072632447) / 1512775;
//
// }
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy