All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.eval.ConfusionMatrix Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*
 *
 *  * Copyright 2015 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 */

package org.deeplearning4j.eval;

import com.google.common.collect.HashMultiset;
import com.google.common.collect.Multiset;

import java.io.Serializable;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class ConfusionMatrix> implements Serializable {
    private Map> matrix;
    private List classes;

    /**
     * Creates an empty confusion Matrix
     */
    public ConfusionMatrix(List classes) {
        this.matrix = new HashMap<>();
        this.classes = classes;
    }

    public ConfusionMatrix() {}

    /**
     * Creates a new ConfusionMatrix initialized with the contents of another ConfusionMatrix.
     */
    public ConfusionMatrix(ConfusionMatrix other) {
        this(other.getClasses());
        this.add(other);
    }

    /**
     * Increments the entry specified by actual and predicted by one.
     */
    public void add(T actual, T predicted) {
        add(actual, predicted, 1);
    }

    /**
     * Increments the entry specified by actual and predicted by count.
     */
    public void add(T actual, T predicted, int count) {
        if (matrix.containsKey(actual)) {
            matrix.get(actual).add(predicted, count);
        } else {
            Multiset counts = HashMultiset.create();
            counts.add(predicted, count);
            matrix.put(actual, counts);
        }
    }

    /**
     * Adds the entries from another confusion matrix to this one.
     */
    public void add(ConfusionMatrix other) {
        for (T actual : other.matrix.keySet()) {
            Multiset counts = other.matrix.get(actual);
            for (T predicted : counts.elementSet()) {
                int count = counts.count(predicted);
                this.add(actual, predicted, count);
            }
        }
    }

    /**
     * Gives the applyTransformToDestination of all classes in the confusion matrix.
     */
    public List getClasses() {
        return classes;
    }

    /**
     * Gives the count of the number of times the "predicted" class was predicted for the "actual"
     * class.
     */
    public int getCount(T actual, T predicted) {
        if (!matrix.containsKey(actual)) {
            return 0;
        } else {
            return matrix.get(actual).count(predicted);
        }
    }

    /**
     * Computes the total number of times the class was predicted by the classifier.
     */
    public int getPredictedTotal(T predicted) {
        int total = 0;
        for (T actual : classes) {
            total += getCount(actual, predicted);
        }
        return total;
    }

    /**
     * Computes the total number of times the class actually appeared in the data.
     */
    public int getActualTotal(T actual) {
        if (!matrix.containsKey(actual)) {
            return 0;
        } else {
            int total = 0;
            for (T elem : matrix.get(actual).elementSet()) {
                total += matrix.get(actual).count(elem);
            }
            return total;
        }
    }

    @Override
    public String toString() {
        return matrix.toString();
    }

    /**
     * Outputs the ConfusionMatrix as comma-separated values for easy import into spreadsheets
     */
    public String toCSV() {
        StringBuilder builder = new StringBuilder();

        // Header Row
        builder.append(",,Predicted Class,\n");

        // Predicted Classes Header Row
        builder.append(",,");
        for (T predicted : classes) {
            builder.append(String.format("%s,", predicted));
        }
        builder.append("Total\n");

        // Data Rows
        String firstColumnLabel = "Actual Class,";
        for (T actual : classes) {
            builder.append(firstColumnLabel);
            firstColumnLabel = ",";
            builder.append(String.format("%s,", actual));

            for (T predicted : classes) {
                builder.append(getCount(actual, predicted));
                builder.append(",");
            }
            // Actual Class Totals Column
            builder.append(getActualTotal(actual));
            builder.append("\n");
        }

        // Predicted Class Totals Row
        builder.append(",Total,");
        for (T predicted : classes) {
            builder.append(getPredictedTotal(predicted));
            builder.append(",");
        }
        builder.append("\n");

        return builder.toString();
    }

    /**
     * Outputs Confusion Matrix in an HTML table. Cascading Style Sheets (CSS) can control the table's
     * appearance by defining the empty-space, actual-count-header, predicted-class-header, and
     * count-element classes. For example
     *
     * @return html string
     */
    public String toHTML() {
        StringBuilder builder = new StringBuilder();

        int numClasses = classes.size();
        // Header Row
        builder.append("\n");
        builder.append("%n",
                numClasses + 1));

        // Predicted Classes Header Row
        builder.append("");
        // builder.append("");
        for (T predicted : classes) {
            builder.append("");
        }
        builder.append("");
        builder.append("\n");

        // Data Rows
        String firstColumnLabel = String.format(
                "",
                numClasses + 1);
        for (T actual : classes) {
            builder.append(firstColumnLabel);
            firstColumnLabel = "";
            builder.append(String.format("", actual));

            for (T predicted : classes) {
                builder.append("");
            }

            // Actual Class Totals Column
            builder.append("");
            builder.append("\n");
        }

        // Predicted Class Totals Row
        builder.append("");
        for (T predicted : classes) {
            builder.append("");
        }
        builder.append("\n");
        builder.append("\n");
        builder.append("
"); builder.append(String.format( "Predicted Class
"); builder.append(predicted); builder.append("Total
Actual Class
%s"); builder.append(getCount(actual, predicted)); builder.append(""); builder.append(getActualTotal(actual)); builder.append("
Total"); builder.append(getPredictedTotal(predicted)); builder.append("
\n"); return builder.toString(); } @Override public boolean equals(Object o){ if( !(o instanceof ConfusionMatrix) ) return false; ConfusionMatrix c = (ConfusionMatrix)o; return matrix.equals(c.matrix) && classes.equals(c.classes); } @Override public int hashCode() { int result = 17; result = 31 * result + (matrix == null? 0 : matrix.hashCode()); result = 31 * result + (classes == null? 0 : classes.hashCode()); return result; } public static void main(String[] args) { ConfusionMatrix confusionMatrix = new ConfusionMatrix<>(Arrays.asList("a", "b", "c")); confusionMatrix.add("a", "a", 88); confusionMatrix.add("a", "b", 10); confusionMatrix.add("b", "a", 14); confusionMatrix.add("b", "b", 40); confusionMatrix.add("b", "c", 6); confusionMatrix.add("c", "a", 18); confusionMatrix.add("c", "b", 10); confusionMatrix.add("c", "c", 12); ConfusionMatrix confusionMatrix2 = new ConfusionMatrix<>(confusionMatrix); confusionMatrix2.add(confusionMatrix); System.out.println(confusionMatrix2.toHTML()); System.out.println(confusionMatrix2.toCSV()); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy