All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.gradientcheck.GradientCheckUtil Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
package org.deeplearning4j.gradientcheck;

import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.nn.api.Updater;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.layers.BaseOutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.updater.UpdaterCreator;
import org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/** A utility for numerically checking gradients. 
* Basic idea: compare calculated gradients with those calculated numerically, * to check implementation of backpropagation gradient calculation.
* See:
* - http://cs231n.github.io/neural-networks-3/#gradcheck
* - http://ufldl.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization
* - https://code.google.com/p/cuda-convnet/wiki/CheckingGradients
* * * Is C is cost function, then dC/dw ~= (C(w+epsilon)-C(w-epsilon)) / (2*epsilon).
* Method checks gradient calculation for every parameter separately by doing 2 forward pass * calculations for each parameter, so can be very time consuming for large networks. * * @author Alex Black */ public class GradientCheckUtil { private static Logger log = LoggerFactory.getLogger(GradientCheckUtil.class); private GradientCheckUtil() { } /** * Check backprop gradients for a MultiLayerNetwork. * @param mln MultiLayerNetwork to test. This must be initialized. * @param epsilon Usually on the order/ of 1e-4 or so. * @param maxRelError Maximum relative error. Usually < 0.01, though maybe more for deep networks * @param print Whether to print full pass/failure details for each parameter gradient * @param exitOnFirstError If true: return upon first failure. If false: continue checking even if * one parameter gradient has failed. Typically use false for debugging, true for unit tests. * @param input Input array to use for forward pass. May be mini-batch data. * @param labels Labels/targets to use to calculate backprop gradient. May be mini-batch data. * @param useUpdater Whether to put the gradient through Updater.update(...). Necessary for testing things * like l1 and l2 regularization. * @return true if gradients are passed, false otherwise. */ public static boolean checkGradients( MultiLayerNetwork mln, double epsilon, double maxRelError, boolean print, boolean exitOnFirstError, INDArray input, INDArray labels, boolean useUpdater) { //Basic sanity checks on input: if(epsilon <= 0.0 || epsilon > 0.1) throw new IllegalArgumentException("Invalid epsilon: expect epsilon in range (0,0.1], usually 1e-4 or so"); if(maxRelError <= 0.0 || maxRelError > 0.25) throw new IllegalArgumentException("Invalid maxRelativeError: " + maxRelError ); if( !(mln.getOutputLayer() instanceof BaseOutputLayer)) throw new IllegalArgumentException("Cannot check backprop gradients without OutputLayer"); mln.setInput(input); mln.setLabels(labels); mln.computeGradientAndScore(); Pair gradAndScore = mln.gradientAndScore(); if(useUpdater) { Updater updater = UpdaterCreator.getUpdater(mln); updater.update(mln, gradAndScore.getFirst(), 0, mln.batchSize()); } INDArray gradientToCheck = gradAndScore.getFirst().gradient().dup(); //need dup: gradients are a *view* of the full gradient array (which will change every time backprop is done) INDArray originalParams = mln.params().dup(); //need dup: params are a *view* of full parameters int nParams = originalParams.length(); int totalNFailures = 0; double maxError = 0.0; for(int i = 0; i < nParams; i++) { //(w+epsilon): Do forward pass and score INDArray params = originalParams.dup(); params.putScalar(i, params.getDouble(i) + epsilon); mln.setParameters(params); mln.computeGradientAndScore(); double scorePlus = mln.score(); //(w-epsilon): Do forward pass and score params.putScalar(i, params.getDouble(i) - 2*epsilon); // +eps - 2*eps = -eps mln.setParameters(params); mln.computeGradientAndScore(); double scoreMinus = mln.score(); //Calculate numerical parameter gradient: double scoreDelta = scorePlus - scoreMinus; double numericalGradient = scoreDelta / (2 * epsilon); if(Double.isNaN(numericalGradient)) throw new IllegalStateException("Numerical gradient was NaN for parameter " + i + " of " + nParams); double backpropGradient = gradientToCheck.getDouble(i); //http://cs231n.github.io/neural-networks-3/#gradcheck //use mean centered double relError = Math.abs(backpropGradient - numericalGradient) / (Math.abs(numericalGradient) + Math.abs(backpropGradient)); if( backpropGradient == 0.0 && numericalGradient == 0.0 ) relError = 0.0; //Edge case: i.e., RNNs with time series length of 1.0 if(relError > maxError) maxError = relError; if(relError > maxRelError || Double.isNaN(relError)) { if(print) log.info("Param " + i + " FAILED: grad= " + backpropGradient + ", numericalGrad= "+numericalGradient + ", relError= " + relError + ", scorePlus="+scorePlus+", scoreMinus= " + scoreMinus); if(exitOnFirstError) return false; totalNFailures++; } else if(print) { log.info("Param " + i + " passed: grad= " + backpropGradient + ", numericalGrad= " + numericalGradient + ", relError= " + relError ); } } if(print) { int nPass = nParams - totalNFailures; log.info("GradientCheckUtil.checkGradients(): " + nParams + " params checked, " + nPass + " passed, " + totalNFailures + " failed. Largest relative error = " + maxError ); } return totalNFailures == 0; } /**Check backprop gradients for a ComputationGraph * @param graph ComputationGraph to test. This must be initialized. * @param epsilon Usually on the order of 1e-4 or so. * @param maxRelError Maximum relative error. Usually < 0.01, though maybe more for deep networks * @param print Whether to print full pass/failure details for each parameter gradient * @param exitOnFirstError If true: return upon first failure. If false: continue checking even if * one parameter gradient has failed. Typically use false for debugging, true for unit tests. * @param inputs Input arrays to use for forward pass. May be mini-batch data. * @param labels Labels/targets (output) arrays to use to calculate backprop gradient. May be mini-batch data. * @return true if gradients are passed, false otherwise. */ public static boolean checkGradients( ComputationGraph graph, double epsilon, double maxRelError, boolean print, boolean exitOnFirstError, INDArray[] inputs, INDArray[] labels) { //Basic sanity checks on input: if(epsilon <= 0.0 || epsilon > 0.1) throw new IllegalArgumentException("Invalid epsilon: expect epsilon in range (0,0.1], usually 1e-4 or so"); if(maxRelError <= 0.0 || maxRelError > 0.25) throw new IllegalArgumentException("Invalid maxRelativeError: " + maxRelError ); if(graph.getNumInputArrays() != inputs.length) throw new IllegalArgumentException("Invalid input arrays: expect " + graph.getNumInputArrays() + " inputs"); if(graph.getNumOutputArrays() != labels.length) throw new IllegalArgumentException("Invalid labels arrays: expect " + graph.getNumOutputArrays() + " outputs"); for( int i=0; i gradAndScore = graph.gradientAndScore(); ComputationGraphUpdater updater = new ComputationGraphUpdater(graph); updater.update(graph, gradAndScore.getFirst(), 0, graph.batchSize()); INDArray gradientToCheck = gradAndScore.getFirst().gradient().dup(); //need dup: gradients are a *view* of the full gradient array (which will change every time backprop is done) INDArray originalParams = graph.params().dup(); //need dup: params are a *view* of full parameters int nParams = originalParams.length(); int totalNFailures = 0; double maxError = 0.0; for(int i = 0; i < nParams; i++) { //(w+epsilon): Do forward pass and score INDArray params = originalParams.dup(); params.putScalar(i, params.getDouble(i) + epsilon); graph.setParams(params); graph.computeGradientAndScore(); double scorePlus = graph.score(); //(w-epsilon): Do forward pass and score params.putScalar(i, params.getDouble(i) - 2*epsilon); // +eps - 2*eps = -eps graph.setParams(params); graph.computeGradientAndScore(); double scoreMinus = graph.score(); //Calculate numerical parameter gradient: double scoreDelta = scorePlus - scoreMinus; double numericalGradient = scoreDelta / (2 * epsilon); if(Double.isNaN(numericalGradient)) throw new IllegalStateException("Numerical gradient was NaN for parameter " + i + " of " + nParams); double backpropGradient = gradientToCheck.getDouble(i); //http://cs231n.github.io/neural-networks-3/#gradcheck //use mean centered double relError = Math.abs(backpropGradient - numericalGradient) / (Math.abs(numericalGradient) + Math.abs(backpropGradient)); if( backpropGradient == 0.0 && numericalGradient == 0.0 ) relError = 0.0; //Edge case: i.e., RNNs with time series length of 1.0 if(relError > maxError) maxError = relError; if(relError > maxRelError || Double.isNaN(relError)) { if(print) log.info("Param " + i + " FAILED: grad= " + backpropGradient + ", numericalGrad= "+numericalGradient + ", relError= " + relError + ", scorePlus="+scorePlus+", scoreMinus= " + scoreMinus); if(exitOnFirstError) return false; totalNFailures++; } else if(print) { log.info("Param " + i + " passed: grad= " + backpropGradient + ", numericalGrad= " + numericalGradient + ", relError= " + relError ); } } if(print) { int nPass = nParams - totalNFailures; log.info("GradientCheckUtil.checkGradients(): " + nParams + " params checked, " + nPass + " passed, " + totalNFailures + " failed. Largest relative error = " + maxError ); } return totalNFailures == 0; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy