org.deeplearning4j.datasets.fetchers.TinyImageNetFetcher Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.datasets.fetchers;
import org.datavec.api.io.filters.RandomPathFilter;
import org.datavec.api.io.labels.ParentPathLabelGenerator;
import org.datavec.api.records.reader.RecordReader;
import org.datavec.api.split.FileSplit;
import org.datavec.api.split.InputSplit;
import org.datavec.image.loader.BaseImageLoader;
import org.datavec.image.recordreader.ImageRecordReader;
import org.datavec.image.transform.ImageTransform;
import org.deeplearning4j.common.resources.DL4JResources;
import org.nd4j.common.base.Preconditions;
import java.io.File;
import java.util.Random;
public class TinyImageNetFetcher extends CacheableExtractableDataSetFetcher {
public static final String WORDS_FILENAME = "words.txt";
public static final String LOCAL_CACHE_NAME = "TINYIMAGENET_200";
public static int INPUT_WIDTH = 64;
public static int INPUT_HEIGHT = 64;
public static int INPUT_CHANNELS = 3;
public static int NUM_LABELS = 200;
public static int NUM_EXAMPLES = NUM_LABELS*500;
@Override
public String remoteDataUrl(DataSetType set) {
return DL4JResources.getURLString("datasets/tinyimagenet_200_dl4j.v1.zip");
}
@Override
public String localCacheName(){ return LOCAL_CACHE_NAME; }
@Override
public long expectedChecksum(DataSetType set) { return 33822361L; }
@Override
public RecordReader getRecordReader(long rngSeed, int[] imgDim, DataSetType set, ImageTransform imageTransform) {
Preconditions.checkState(imgDim == null || imgDim.length == 2, "Invalid image dimensions: must be null or lenth 2. Got: %s", imgDim);
// check empty cache
File localCache = getLocalCacheDir();
deleteIfEmpty(localCache);
try {
if (!localCache.exists()){
downloadAndExtract();
}
} catch(Exception e) {
throw new RuntimeException("Could not download TinyImageNet", e);
}
Random rng = new Random(rngSeed);
File datasetPath;
switch (set) {
case TRAIN:
datasetPath = new File(localCache, "/train/");
break;
case TEST:
datasetPath = new File(localCache, "/test/");
break;
case VALIDATION:
throw new IllegalArgumentException("You will need to manually iterate the /validation/images/ directory, TinyImageNet does not provide labels");
default:
datasetPath = new File(localCache, "/train/");
}
// set up file paths
RandomPathFilter pathFilter = new RandomPathFilter(rng, BaseImageLoader.ALLOWED_FORMATS);
FileSplit filesInDir = new FileSplit(datasetPath, BaseImageLoader.ALLOWED_FORMATS, rng);
InputSplit[] filesInDirSplit = filesInDir.sample(pathFilter, 1);
int h = (imgDim == null ? TinyImageNetFetcher.INPUT_HEIGHT : imgDim[0]);
int w = (imgDim == null ? TinyImageNetFetcher.INPUT_WIDTH : imgDim[1]);
ImageRecordReader rr = new ImageRecordReader(h, w,TinyImageNetFetcher.INPUT_CHANNELS, new ParentPathLabelGenerator(), imageTransform);
try {
rr.initialize(filesInDirSplit[0]);
} catch(Exception e) {
throw new RuntimeException(e);
}
return rr;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy