org.deeplearning4j.datasets.fetchers.SvhnDataFetcher Maven / Gradle / Ivy
/*-
* * Copyright 2017 Skymind, Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*/
package org.deeplearning4j.datasets.fetchers;
import org.datavec.api.records.reader.RecordReader;
import org.datavec.api.split.FileSplit;
import org.datavec.image.loader.BaseImageLoader;
import org.datavec.image.recordreader.objdetect.ObjectDetectionRecordReader;
import org.datavec.image.transform.ImageTransform;
import java.io.File;
import java.io.IOException;
import java.util.Random;
/**
* The Street View House Numbers (SVHN) Dataset is a real-world image dataset for developing machine learning
* and object recognition algorithms with minimal requirement on data preprocessing and formatting.
*
* The SVHN datasets contain 10 classes (digits) with 73257 digits for training, 26032 digits for testing, and 531131 extra.
*
* Datasets in "Format 1: Full Numbers" are fetched.
*
* See: http://ufldl.stanford.edu/housenumbers/
*
* @author saudet
*/
public class SvhnDataFetcher extends CacheableExtractableDataSetFetcher {
public static int NUM_LABELS = 10;
@Override
public String remoteDataUrl(DataSetType set) {
switch (set) {
case TRAIN:
return "http://ufldl.stanford.edu/housenumbers/train.tar.gz";
case TEST:
return "http://ufldl.stanford.edu/housenumbers/test.tar.gz";
case VALIDATION:
return "http://ufldl.stanford.edu/housenumbers/extra.tar.gz";
default:
throw new IllegalArgumentException("Unknown DataSetType:" + set);
}
}
@Override
public String localCacheName() {
return "SVHN";
}
@Override
public String dataSetName(DataSetType set) {
switch (set) {
case TRAIN:
return "train";
case TEST:
return "test";
case VALIDATION:
return "extra";
default:
throw new IllegalArgumentException("Unknown DataSetType:" + set);
}
}
@Override
public long expectedChecksum(DataSetType set) {
switch (set) {
case TRAIN:
return 979655493L;
case TEST:
return 1629515343L;
case VALIDATION:
return 132781169L;
default:
throw new IllegalArgumentException("Unknown DataSetType:" + set);
}
}
public File getDataSetPath(DataSetType set) throws IOException {
// check empty cache
if (LOCAL_CACHE.exists()) {
if (LOCAL_CACHE.listFiles().length < 1) {
LOCAL_CACHE.delete();
}
}
File datasetPath;
switch (set) {
case TRAIN:
datasetPath = new File(LOCAL_CACHE, "/train/");
break;
case TEST:
datasetPath = new File(LOCAL_CACHE, "/test/");
break;
case VALIDATION:
datasetPath = new File(LOCAL_CACHE, "/extra/");
break;
default:
datasetPath = null;
}
if (!datasetPath.exists()) {
downloadAndExtract(set);
}
return datasetPath;
}
@Override
public RecordReader getRecordReader(long rngSeed, int[] imgDim, DataSetType set, ImageTransform imageTransform) {
try {
Random rng = new Random(rngSeed);
File datasetPath = getDataSetPath(set);
FileSplit data = new FileSplit(datasetPath, BaseImageLoader.ALLOWED_FORMATS, rng);
ObjectDetectionRecordReader recordReader = new ObjectDetectionRecordReader(imgDim[1], imgDim[0], imgDim[2],
imgDim[4], imgDim[3], null);
recordReader.initialize(data);
return recordReader;
} catch (IOException e) {
throw new RuntimeException("Could not download SVHN", e);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy