org.deeplearning4j.example.mnist.RawMnistGradientDescent Maven / Gradle / Ivy
package org.deeplearning4j.example.mnist;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.util.List;
import java.util.concurrent.TimeUnit;
import org.deeplearning4j.datasets.DataSet;
import org.deeplearning4j.datasets.iterator.DataSetIterator;
import org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator;
import org.deeplearning4j.datasets.iterator.impl.RawMnistDataSetIterator;
import org.deeplearning4j.dbn.DBN;
import org.deeplearning4j.eval.Evaluation;
import org.deeplearning4j.util.SerializationUtils;
import org.jblas.DoubleMatrix;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class RawMnistGradientDescent {
private static Logger log = LoggerFactory.getLogger(RawMnistGradientDescent.class);
/**
* @param args
*/
public static void main(String[] args) throws Exception {
//batches of 10, 60000 examples total
DataSetIterator iter = null;
if(args.length < 2) {
iter = new RawMnistDataSetIterator(10,60000);
}
else {
int start = Integer.parseInt(args[1]);
iter = new RawMnistDataSetIterator(60000,60000);
DataSet next = iter.next();
List list = next.asList();
list = list.subList(start, list.size());
iter = new ListDataSetIterator(list,10);
}
//784 input (number of columns in mnist, 10 labels (0-9), no regularization
DBN dbn = null;
if(args.length < 2) {
dbn = new DBN.Builder().useAdaGrad(true)
.hiddenLayerSizes(new int[]{500,400,250})
.renderWeights(100)
.numberOfInputs(784).numberOfOutPuts(10)
.useRegularization(true)
.build();
}
else {
dbn = SerializationUtils.readObject(new File(args[0]));
}
int numIters = 0;
while(iter.hasNext()) {
DataSet next = iter.next();
long now = System.currentTimeMillis();
dbn.pretrain(next.getFirst(), 1, 0.0001, 1000);
long after = System.currentTimeMillis();
log.info("Pretrain took " + TimeUnit.MILLISECONDS.toSeconds((after - now)) + " seconds");
BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream("mnist-pretrain-dbn.bin-" + numIters + "-sgd"));
dbn.write(bos);
bos.flush();
bos.close();
log.info("Saved dbn");
numIters++;
//dbn.finetune(next.getSecond(), 0.01, 1000);
}
BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream("mnist-dbn.bin"));
dbn.write(bos);
bos.flush();
bos.close();
log.info("Saved dbn");
iter.reset();
while(iter.hasNext()) {
DataSet next = iter.next();
dbn.finetune(next.getSecond(), 0.01, 1000);
}
iter.reset();
Evaluation eval = new Evaluation();
while(iter.hasNext()) {
DataSet next = iter.next();
DoubleMatrix predict = dbn.predict(next.getFirst());
DoubleMatrix labels = next.getSecond();
eval.eval(labels, predict);
}
log.info("Prediciton f scores and accuracy");
log.info(eval.stats());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy