All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.graph.iterator.WeightedRandomWalkIterator Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
package org.deeplearning4j.graph.iterator;

import org.deeplearning4j.graph.api.*;
import org.deeplearning4j.graph.exception.NoEdgesException;
import org.deeplearning4j.graph.graph.VertexSequence;

import java.util.List;
import java.util.NoSuchElementException;
import java.util.Random;

/**Given a graph, iterate through random walks on that graph of a specified length.
 * Unlike {@link RandomWalkIterator}, the {@code WeightedRandomWalkIterator} uses the values associated with each edge
 * to determine probabilities. Weights on each edge need not be normalized.
* Because the edge values are used to determine the probabilities of selecting an edge, the {@code WeightedRandomWalkIterator} * can only be used on graphs with an edge type that extends the {@link java.lang.Number} class (i.e., Integer, Double, etc)
* Random walks are generated starting at every node in the graph exactly once, though the order of the starting nodes * is randomized. * @author Alex Black */ public class WeightedRandomWalkIterator implements GraphWalkIterator { private final IGraph graph; private final int walkLength; private final NoEdgeHandling mode; private final int firstVertex; private final int lastVertex; private int position; private Random rng; private int[] order; public WeightedRandomWalkIterator(IGraph graph, int walkLength){ this(graph,walkLength,System.currentTimeMillis(), NoEdgeHandling.EXCEPTION_ON_DISCONNECTED); } /**Construct a RandomWalkIterator for a given graph, with a specified walk length and random number generator seed.
* Uses {@code NoEdgeHandling.EXCEPTION_ON_DISCONNECTED} - hence exception will be thrown when generating random * walks on graphs with vertices containing having no edges, or no outgoing edges (for directed graphs) * @see #WeightedRandomWalkIterator(IGraph, int, long, NoEdgeHandling) */ public WeightedRandomWalkIterator(IGraph graph, int walkLength, long rngSeed){ this(graph, walkLength, rngSeed, NoEdgeHandling.EXCEPTION_ON_DISCONNECTED); } /** * @param graph IGraph to conduct walks on * @param walkLength length of each walk. Walk of length 0 includes 1 vertex, walk of 1 includes 2 vertices etc * @param rngSeed seed for randomization * @param mode mode for handling random walks from vertices with either no edges, or no outgoing edges (for directed graphs) */ public WeightedRandomWalkIterator(IGraph graph, int walkLength, long rngSeed, NoEdgeHandling mode){ this(graph,walkLength,rngSeed,mode,0,graph.numVertices()); } /**Constructor used to generate random walks starting at a subset of the vertices in the graph. Order of starting * vertices is randomized within this subset * @param graph IGraph to conduct walks on * @param walkLength length of each walk. Walk of length 0 includes 1 vertex, walk of 1 includes 2 vertices etc * @param rngSeed seed for randomization * @param mode mode for handling random walks from vertices with either no edges, or no outgoing edges (for directed graphs) * @param firstVertex first vertex index (inclusive) to start random walks from * @param lastVertex last vertex index (exclusive) to start random walks from */ public WeightedRandomWalkIterator(IGraph graph, int walkLength, long rngSeed, NoEdgeHandling mode, int firstVertex, int lastVertex){ this.graph = graph; this.walkLength = walkLength; this.rng = new Random(rngSeed); this.mode = mode; this.firstVertex = firstVertex; this.lastVertex = lastVertex; order = new int[lastVertex-firstVertex]; for( int i=0; i next() { if(!hasNext()) throw new NoSuchElementException(); //Generate a weighted random walk starting at vertex order[current] int currVertexIdx = order[position++]; int[] indices = new int[walkLength+1]; indices[0] = currVertexIdx; if(walkLength == 0) return new VertexSequence<>(graph,indices); for( int i=1; i<=walkLength; i++ ) { List> edgeList = graph.getEdgesOut(currVertexIdx); //First: check if there are any outgoing edges from this vertex. If not: handle the situation if(edgeList == null || edgeList.size() == 0){ switch (mode) { case SELF_LOOP_ON_DISCONNECTED: for (int j = i; j < walkLength; j++) indices[j] = currVertexIdx; return new VertexSequence<>(graph, indices); case EXCEPTION_ON_DISCONNECTED: throw new NoEdgesException("Cannot conduct random walk: vertex " + currVertexIdx + " has no outgoing edges. " + " Set NoEdgeHandling mode to NoEdgeHandlingMode.SELF_LOOP_ON_DISCONNECTED to self loop instead of " + "throwing an exception in this situation."); default: throw new RuntimeException("Unknown/not implemented NoEdgeHandling mode: " + mode); } } //To do a weighted random walk: we need to know total weight of all outgoing edges double totalWeight = 0.0; for (Edge edge : edgeList) { totalWeight += edge.getValue().doubleValue(); } double d = rng.nextDouble(); double threshold = d * totalWeight; double sumWeight = 0.0; for (Edge edge : edgeList) { sumWeight += edge.getValue().doubleValue(); if (sumWeight >= threshold) { if (edge.isDirected()) { currVertexIdx = edge.getTo(); } else { if (edge.getFrom() == currVertexIdx) { currVertexIdx = edge.getTo(); } else { currVertexIdx = edge.getFrom(); //Undirected edge: might be next--currVertexIdx instead of currVertexIdx--next } } indices[i] = currVertexIdx; break; } } } return new VertexSequence<>(graph,indices); } @Override public boolean hasNext() { return position < order.length; } @Override public void reset() { position = 0; //https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm for(int i=order.length-1; i>0; i-- ){ int j = rng.nextInt(i+1); int temp = order[j]; order[j] = order[i]; order[i] = temp; } } @Override public int walkLength(){ return walkLength; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy