![JAR search and dependency download from the Maven repository](/logo.png)
org.deeplearning4j.iterator.bert.BertMaskedLMMasker Maven / Gradle / Ivy
The newest version!
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.iterator.bert;
import org.nd4j.common.base.Preconditions;
import org.nd4j.common.primitives.Pair;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class BertMaskedLMMasker implements BertSequenceMasker {
public static final double DEFAULT_MASK_PROB = 0.15;
public static final double DEFAULT_MASK_TOKEN_PROB = 0.8;
public static final double DEFAULT_RANDOM_WORD_PROB = 0.1;
protected final Random r;
protected final double maskProb;
protected final double maskTokenProb;
protected final double randomTokenProb;
/**
* Create a BertMaskedLMMasker with all default probabilities
*/
public BertMaskedLMMasker(){
this(new Random(), DEFAULT_MASK_PROB, DEFAULT_MASK_TOKEN_PROB, DEFAULT_RANDOM_WORD_PROB);
}
/**
* See: {@link BertMaskedLMMasker} for details.
* @param r Random number generator
* @param maskProb Probability of masking each token
* @param maskTokenProb Probability of replacing a selected token with the mask token
* @param randomTokenProb Probability of replacing a selected token with a random token
*/
public BertMaskedLMMasker(Random r, double maskProb, double maskTokenProb, double randomTokenProb){
Preconditions.checkArgument(maskProb > 0 && maskProb < 1, "Probability must be beteen 0 and 1, got %s", maskProb);
Preconditions.checkState(maskTokenProb >=0 && maskTokenProb <= 1.0, "Mask token probability must be between 0 and 1, got %s", maskTokenProb);
Preconditions.checkState(randomTokenProb >=0 && randomTokenProb <= 1.0, "Random token probability must be between 0 and 1, got %s", randomTokenProb);
Preconditions.checkState(maskTokenProb + randomTokenProb <= 1.0, "Sum of maskTokenProb (%s) and randomTokenProb (%s) must be <= 1.0, got sum is %s",
maskTokenProb, randomTokenProb, (maskTokenProb + randomTokenProb));
this.r = r;
this.maskProb = maskProb;
this.maskTokenProb = maskTokenProb;
this.randomTokenProb = randomTokenProb;
}
@Override
public Pair,boolean[]> maskSequence(List input, String maskToken, List vocabWords) {
List out = new ArrayList<>(input.size());
boolean[] masked = new boolean[input.size()];
for(int i=0; i(out, masked);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy