org.deeplearning4j.datasets.iterator.SamplingDataSetIterator Maven / Gradle / Ivy
/*
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.datasets.iterator;
import lombok.Getter;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.DataSetPreProcessor;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import java.util.List;
/**
* A wrapper for a dataset to sample from.
* This will randomly sample from the given dataset.
* @author Adam GIbson
*/
public class SamplingDataSetIterator implements DataSetIterator {
/**
*
*/
private static final long serialVersionUID = -2700563801361726914L;
private DataSet sampleFrom;
private int batchSize;
private int totalNumberSamples;
private int numTimesSampled;
@Getter private DataSetPreProcessor preProcessor;
/**
*
* @param sampleFrom the dataset to sample from
* @param batchSize the batch size to sample
* @param totalNumberSamples the sample size
*/
public SamplingDataSetIterator(DataSet sampleFrom, int batchSize,
int totalNumberSamples) {
super();
this.sampleFrom = sampleFrom;
this.batchSize = batchSize;
this.totalNumberSamples = totalNumberSamples;
}
@Override
public boolean hasNext() {
return numTimesSampled < totalNumberSamples;
}
@Override
public DataSet next() {
DataSet ret = sampleFrom.sample(batchSize);
numTimesSampled+= batchSize;
return ret;
}
@Override
public void remove() {
throw new UnsupportedOperationException();
}
@Override
public int totalExamples() {
return totalNumberSamples * batchSize;
}
@Override
public int inputColumns() {
return sampleFrom.numInputs();
}
@Override
public int totalOutcomes() {
return sampleFrom.numOutcomes();
}
@Override
public boolean resetSupported(){
return true;
}
@Override
public boolean asyncSupported() {
return true;
}
@Override
public void reset() {
numTimesSampled = 0;
}
@Override
public int batch() {
return batchSize;
}
@Override
public int cursor() {
return numTimesSampled;
}
@Override
public int numExamples() {
return sampleFrom.numExamples();
}
@Override
public void setPreProcessor(DataSetPreProcessor preProcessor) {
this.preProcessor = (DataSetPreProcessor) preProcessor;
}
@Override
public List getLabels() {
return null;
}
@Override
public DataSet next(int num) {
DataSet ret = sampleFrom.sample(num);
numTimesSampled++;
return ret;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy