org.deeplearning4j.nn.conf.layers.BasePretrainNetwork Maven / Gradle / Ivy
/*
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.conf.layers;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import lombok.ToString;
import org.deeplearning4j.nn.params.PretrainParamInitializer;
import org.nd4j.linalg.lossfunctions.LossFunctions;
@Data @NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public abstract class BasePretrainNetwork extends FeedForwardLayer {
protected LossFunctions.LossFunction lossFunction;
@Deprecated
protected String customLossFunction;
protected double visibleBiasInit;
private int preTrainIterations;
public BasePretrainNetwork(Builder builder){
super(builder);
this.lossFunction = builder.lossFunction;
this.customLossFunction = builder.customLossFunction;
this.visibleBiasInit = builder.visibleBiasInit;
this.preTrainIterations = builder.preTrainIterations;
}
@Override
public double getL1ByParam(String paramName) {
switch (paramName){
case PretrainParamInitializer.WEIGHT_KEY:
return l1;
case PretrainParamInitializer.BIAS_KEY:
return 0.0;
case PretrainParamInitializer.VISIBLE_BIAS_KEY:
return 0.0;
default:
throw new IllegalArgumentException("Unknown parameter name: \"" + paramName + "\"");
}
}
@Override
public double getL2ByParam(String paramName) {
switch (paramName){
case PretrainParamInitializer.WEIGHT_KEY:
return l2;
case PretrainParamInitializer.BIAS_KEY:
return 0.0;
case PretrainParamInitializer.VISIBLE_BIAS_KEY:
return 0.0;
default:
throw new IllegalArgumentException("Unknown parameter name: \"" + paramName + "\"");
}
}
@Override
public double getLearningRateByParam(String paramName) {
switch (paramName){
case PretrainParamInitializer.WEIGHT_KEY:
return learningRate;
case PretrainParamInitializer.BIAS_KEY:
if(!Double.isNaN(biasLearningRate)){
//Bias learning rate has been explicitly set
return biasLearningRate;
} else {
return learningRate;
}
case PretrainParamInitializer.VISIBLE_BIAS_KEY:
if(!Double.isNaN(biasLearningRate)){
//Bias learning rate has been explicitly set
return biasLearningRate;
} else {
return learningRate;
}
default:
throw new IllegalArgumentException("Unknown parameter name: \"" + paramName + "\"");
}
}
public static abstract class Builder> extends FeedForwardLayer.Builder {
protected LossFunctions.LossFunction lossFunction = LossFunctions.LossFunction.RECONSTRUCTION_CROSSENTROPY;
protected String customLossFunction = null;
protected double visibleBiasInit = 0.0;
protected int preTrainIterations = 1;
public Builder() {}
public T lossFunction(LossFunctions.LossFunction lossFunction) {
this.lossFunction = lossFunction;
return (T) this;
}
@Deprecated
public T customLossFunction(String customLossFunction) {
this.customLossFunction = customLossFunction;
return (T) this;
}
public T visibleBiasInit(double visibleBiasInit){
this.visibleBiasInit = visibleBiasInit;
return (T) this;
}
public T preTrainIterations(int preTrainIterations){
this.preTrainIterations = preTrainIterations;
return (T) this;
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy