org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer Maven / Gradle / Ivy
package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.inputs.InputType;
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public abstract class BaseRecurrentLayer extends FeedForwardLayer {
protected BaseRecurrentLayer(Builder builder) {
super(builder);
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
if (inputType == null || inputType.getType() != InputType.Type.RNN) {
throw new IllegalStateException("Invalid input for RNN layer (layer index = " + layerIndex +
", layer name = \"" + getLayerName() + "\"): expect RNN input type with size > 0. Got: " + inputType);
}
return InputType.recurrent(nOut);
}
@Override
public void setNIn(InputType inputType, boolean override) {
if (inputType == null || inputType.getType() != InputType.Type.RNN) {
throw new IllegalStateException("Invalid input for RNN layer (layer name = \"" + getLayerName() + "\"): expect RNN input type with size > 0. Got: " + inputType);
}
if (nIn <= 0 || override) {
InputType.InputTypeRecurrent r = (InputType.InputTypeRecurrent) inputType;
this.nIn = r.getSize();
}
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
return InputTypeUtil.getPreprocessorForInputTypeRnnLayers(inputType, getLayerName());
}
@AllArgsConstructor
public static abstract class Builder> extends FeedForwardLayer.Builder> {
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy