All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
package org.deeplearning4j.nn.conf.layers.variational;

import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.random.impl.GaussianDistribution;
import org.nd4j.shade.jackson.annotation.JsonSubTypes;
import org.nd4j.shade.jackson.annotation.JsonTypeInfo;

import java.io.Serializable;

/**
 * The ReconstructionDistribution is used with variational autoencoders {@link VariationalAutoencoder}
 * to specify the form of the distribution p(data|x). For example, real-valued data could be modelled
 * by a {@link GaussianReconstructionDistribution}, whereas binary data could be modelled by a {@link BernoulliReconstructionDistribution}.
*

* To model multiple types of data in the one data vector, use {@link CompositeReconstructionDistribution}. * * @author Alex Black */ @JsonTypeInfo(use = JsonTypeInfo.Id.NAME, include = JsonTypeInfo.As.WRAPPER_OBJECT) @JsonSubTypes(value = { @JsonSubTypes.Type(value = GaussianReconstructionDistribution.class, name = "Gaussian"), @JsonSubTypes.Type(value = BernoulliReconstructionDistribution.class, name = "Bernoulli"), @JsonSubTypes.Type(value = ExponentialReconstructionDistribution.class, name = "Exponential"), @JsonSubTypes.Type(value = CompositeReconstructionDistribution.class, name = "Composite"), @JsonSubTypes.Type(value = LossFunctionWrapper.class, name = "LossWrapper") }) public interface ReconstructionDistribution extends Serializable { /** * Get the number of distribution parameters for the given input data size. * For example, a Gaussian distribution has 2 parameters value (mean and log(variance)) for each data value, * whereas a Bernoulli distribution has only 1 parameter value (probability) for each data value. * * @param dataSize Size of the data. i.e., nIn value * @return Number of distribution parameters for the given reconstruction distribution */ int distributionInputSize(int dataSize); /** * Calculate the negative log probability (summed or averaged over each example in the minibatch) * * @param x Data to be modelled (reconstructions) * @param preOutDistributionParams Distribution parameters used by this reconstruction distribution (for example, * mean and log variance values for Gaussian) * @param average Whether the log probability should be averaged over the minibatch, or simply summed. * @return Average or sum of negative log probability of the reconstruction given the distribution parameters */ double negLogProbability(INDArray x, INDArray preOutDistributionParams, boolean average); /** * Calculate the negative log probability for each example individually * * @param x Data to be modelled (reconstructions) * @param preOutDistributionParams Distribution parameters used by this reconstruction distribution (for example, * mean and log variance values for Gaussian) - before applying activation function * @return Negative log probability of the reconstruction given the distribution parameters, for each example individually. * Column vector, shape [numExamples, 1] */ INDArray exampleNegLogProbability(INDArray x, INDArray preOutDistributionParams); /** * Calculate the gradient of the negative log probability with respect to the preOutDistributionParams * * @param x Data * @param preOutDistributionParams Distribution parameters used by this reconstruction distribution (for example, * mean and log variance values for Gaussian) - before applying activation function * @return Gradient with respect to the preOutDistributionParams */ INDArray gradient(INDArray x, INDArray preOutDistributionParams); /** * Randomly sample from P(x|z) using the specified distribution parameters * * @param preOutDistributionParams Distribution parameters used by this reconstruction distribution (for example, * mean and log variance values for Gaussian) - before applying activation function * @return A random sample of x given the distribution parameters */ INDArray generateRandom(INDArray preOutDistributionParams); /** * Generate a sample from P(x|z), where x = E[P(x|z)] * i.e., return the mean value for the distribution * * @param preOutDistributionParams Distribution parameters used by this reconstruction distribution (for example, * mean and log variance values for Gaussian) - before applying activation function * @return A deterministic sample of x (mean/expected value) given the distribution parameters */ INDArray generateAtMean(INDArray preOutDistributionParams); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy