org.deeplearning4j.nn.graph.vertex.impl.LayerVertex Maven / Gradle / Ivy
/*
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.nn.graph.vertex.impl;
import lombok.Data;
import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.layers.IOutputLayer;
import org.deeplearning4j.nn.api.layers.RecurrentLayer;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.graph.vertex.BaseGraphVertex;
import org.deeplearning4j.nn.graph.vertex.VertexIndices;
import org.deeplearning4j.nn.layers.BaseOutputLayer;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Arrays;
/**
* LayerVertex is a GraphVertex with a neural network Layer (and, optionally an {@link InputPreProcessor}) in it
*
* @author Alex Black
*/
@Data
public class LayerVertex extends BaseGraphVertex {
private final Layer layer;
private final InputPreProcessor layerPreProcessor;
//Set outputVertex to true when Layer is an OutputLayer, OR For use in specialized situations like reinforcement learning
// For RL situations, this Layer insn't an OutputLayer, but is the last layer in a graph, that gets its error/epsilon
// passed in externally
private final boolean outputVertex;
/**
* Create a network input vertex:
*/
public LayerVertex(ComputationGraph graph, String name, int vertexIndex, Layer layer, InputPreProcessor layerPreProcessor, boolean outputVertex) {
this(graph, name, vertexIndex, null, null, layer, layerPreProcessor, outputVertex);
}
public LayerVertex(ComputationGraph graph, String name, int vertexIndex, VertexIndices[] inputVertices, VertexIndices[] outputVertices,
Layer layer, InputPreProcessor layerPreProcessor, boolean outputVertex) {
super(graph, name, vertexIndex, inputVertices, outputVertices);
this.graph = graph;
this.vertexName = name;
this.vertexIndex = vertexIndex;
this.inputVertices = inputVertices;
this.outputVertices = outputVertices;
this.layer = layer;
this.layerPreProcessor = layerPreProcessor;
this.outputVertex = outputVertex;
this.inputs = new INDArray[(inputVertices != null ? inputVertices.length : 0)];
}
@Override
public boolean hasLayer() {
return true;
}
@Override
public boolean isOutputVertex() {
return outputVertex || layer instanceof BaseOutputLayer;
}
@Override
public Layer getLayer() {
return layer;
}
@Override
public INDArray doForward(boolean training) {
if (!canDoForward()) throw new IllegalStateException("Cannot do forward pass: all inputs not set");
return layer.activate(training);
}
@Override
public Pair doBackward(boolean tbptt) {
if (!canDoBackward()) {
throw new IllegalStateException("Cannot do backward pass: all epsilons not set");
}
Pair pair;
if (tbptt && layer instanceof RecurrentLayer) {
//Truncated BPTT for recurrent layers
pair = ((RecurrentLayer) layer).tbpttBackpropGradient(epsilon, graph.getConfiguration().getTbpttBackLength());
} else {
//Normal backprop
pair = layer.backpropGradient(epsilon); //epsTotal may be null for OutputLayers
}
if (layerPreProcessor != null) {
INDArray eps = pair.getSecond();
eps = layerPreProcessor.backprop(eps, graph.batchSize());
pair.setSecond(eps);
}
//Layers always have single activations input -> always have single epsilon output during backprop
return new Pair<>(pair.getFirst(), new INDArray[]{pair.getSecond()});
}
@Override
public void setInput(int inputNumber, INDArray input) {
if (inputNumber > 0)
throw new IllegalArgumentException("Invalid input number: LayerVertex instances have only 1 input (got inputNumber = " + inputNumber + ")");
inputs[inputNumber] = input;
INDArray currInput = inputs[0];
if (layerPreProcessor != null) {
currInput = layerPreProcessor.preProcess(currInput, graph.batchSize());
}
layer.setInput(currInput);
}
@Override
public void setBackpropGradientsViewArray(INDArray backpropGradientsViewArray) {
layer.setBackpropGradientsViewArray(backpropGradientsViewArray);
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("LayerVertex(id=").append(vertexIndex).append(",name=\"").append(vertexName)
.append("\",inputs=").append(Arrays.toString(inputVertices)).append(",outputs=").append(Arrays.toString(outputVertices))
.append(")");
return sb.toString();
}
@Override
public boolean canDoBackward() {
if (!isOutputVertex()) return super.canDoBackward();
for (INDArray input : inputs) {
if (input == null) {
return false;
}
}
if (!(layer instanceof IOutputLayer)) {
if (epsilon == null) {
return false;
}
}
return true;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy