org.deeplearning4j.optimize.Solver Maven / Gradle / Ivy
/*
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.optimize;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.optimize.api.ConvexOptimizer;
import org.deeplearning4j.optimize.api.IterationListener;
import org.deeplearning4j.optimize.api.StepFunction;
import org.deeplearning4j.optimize.solvers.ConjugateGradient;
import org.deeplearning4j.optimize.solvers.LBFGS;
import org.deeplearning4j.optimize.solvers.LineGradientDescent;
import org.deeplearning4j.optimize.solvers.StochasticGradientDescent;
import org.deeplearning4j.optimize.stepfunctions.StepFunctions;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.List;
/**
* Generic purpose solver
* @author Adam Gibson
*/
public class Solver {
private NeuralNetConfiguration conf;
private Collection listeners;
private Model model;
private ConvexOptimizer optimizer;
private StepFunction stepFunction;
public void optimize() {
if(optimizer == null)
optimizer = getOptimizer();
optimizer.optimize();
}
public ConvexOptimizer getOptimizer() {
if(optimizer != null) return optimizer;
switch(conf.getOptimizationAlgo()) {
case LBFGS:
optimizer = new LBFGS(conf,stepFunction,listeners,model);
break;
case LINE_GRADIENT_DESCENT:
optimizer = new LineGradientDescent(conf,stepFunction,listeners,model);
break;
case CONJUGATE_GRADIENT:
optimizer = new ConjugateGradient(conf,stepFunction,listeners,model);
break;
case STOCHASTIC_GRADIENT_DESCENT:
optimizer = new StochasticGradientDescent(conf,stepFunction,listeners,model);
break;
default:
throw new IllegalStateException("No optimizer found");
}
return optimizer;
}
public void setListeners(Collection listeners){
this.listeners = listeners;
if(optimizer != null ) optimizer.setListeners(listeners);
}
public static class Builder {
private NeuralNetConfiguration conf;
private Model model;
private List listeners = new ArrayList<>();
public Builder configure(NeuralNetConfiguration conf) {
this.conf = conf;
return this;
}
public Builder listener(IterationListener... listeners) {
this.listeners.addAll(Arrays.asList(listeners));
return this;
}
public Builder listeners(Collection listeners) {
this.listeners.addAll(listeners);
return this;
}
public Builder model(Model model) {
this.model = model;
return this;
}
public Solver build() {
Solver solver = new Solver();
solver.conf = conf;
solver.stepFunction = StepFunctions.createStepFunction(conf.getStepFunction());
solver.model = model;
solver.listeners = listeners;
return solver;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy